Cargando…
Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters
While mapping algal blooms from space is now well-established, mapping undesirable algal blooms in eutrophicated coastal waters raises further challenge in detecting individual phytoplankton species. In this paper, an algorithm is developed and tested for detecting Phaeocystis globosa blooms in the...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639444/ https://www.ncbi.nlm.nih.gov/pubmed/19461860 http://dx.doi.org/10.1093/plankt/fbn116 |
_version_ | 1782164465523884032 |
---|---|
author | Astoreca, Rosa Rousseau, Véronique Ruddick, Kevin Knechciak, Cécile Van Mol, Barbara Parent, Jean-Yves Lancelot, Christiane |
author_facet | Astoreca, Rosa Rousseau, Véronique Ruddick, Kevin Knechciak, Cécile Van Mol, Barbara Parent, Jean-Yves Lancelot, Christiane |
author_sort | Astoreca, Rosa |
collection | PubMed |
description | While mapping algal blooms from space is now well-established, mapping undesirable algal blooms in eutrophicated coastal waters raises further challenge in detecting individual phytoplankton species. In this paper, an algorithm is developed and tested for detecting Phaeocystis globosa blooms in the Southern North Sea. For this purpose, we first measured the light absorption properties of two phytoplankton groups, P. globosa and diatoms, in laboratory-controlled experiments. The main spectral difference between both groups was observed at 467 nm due to the absorption of the pigment chlorophyll c3 only present in P. globosa, suggesting that the absorption at 467 nm can be used to detect this alga in the field. A Phaeocystis-detection algorithm is proposed to retrieve chlorophyll c3 using either total absorption or water-leaving reflectance field data. Application of this algorithm to absorption and reflectance data from Phaeocystis-dominated natural communities shows positive results. Comparison with pigment concentrations and cell counts suggests that the algorithm can flag the presence of P. globosa and provide quantitative information above a chlorophyll c3 threshold of 0.3 mg m(−3) equivalent to a P. globosa cell density of 3 × 10(6) cells L(−1). Finally, the possibility of extrapolating this information to remote sensing reflectance data in these turbid waters is evaluated. |
format | Text |
id | pubmed-2639444 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-26394442009-02-25 Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters Astoreca, Rosa Rousseau, Véronique Ruddick, Kevin Knechciak, Cécile Van Mol, Barbara Parent, Jean-Yves Lancelot, Christiane J Plankton Res Original Articles While mapping algal blooms from space is now well-established, mapping undesirable algal blooms in eutrophicated coastal waters raises further challenge in detecting individual phytoplankton species. In this paper, an algorithm is developed and tested for detecting Phaeocystis globosa blooms in the Southern North Sea. For this purpose, we first measured the light absorption properties of two phytoplankton groups, P. globosa and diatoms, in laboratory-controlled experiments. The main spectral difference between both groups was observed at 467 nm due to the absorption of the pigment chlorophyll c3 only present in P. globosa, suggesting that the absorption at 467 nm can be used to detect this alga in the field. A Phaeocystis-detection algorithm is proposed to retrieve chlorophyll c3 using either total absorption or water-leaving reflectance field data. Application of this algorithm to absorption and reflectance data from Phaeocystis-dominated natural communities shows positive results. Comparison with pigment concentrations and cell counts suggests that the algorithm can flag the presence of P. globosa and provide quantitative information above a chlorophyll c3 threshold of 0.3 mg m(−3) equivalent to a P. globosa cell density of 3 × 10(6) cells L(−1). Finally, the possibility of extrapolating this information to remote sensing reflectance data in these turbid waters is evaluated. Oxford University Press 2009-03 2008-12-16 /pmc/articles/PMC2639444/ /pubmed/19461860 http://dx.doi.org/10.1093/plankt/fbn116 Text en © 2008 The Author(s) |
spellingShingle | Original Articles Astoreca, Rosa Rousseau, Véronique Ruddick, Kevin Knechciak, Cécile Van Mol, Barbara Parent, Jean-Yves Lancelot, Christiane Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title | Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title_full | Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title_fullStr | Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title_full_unstemmed | Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title_short | Development and application of an algorithm for detecting Phaeocystis globosa blooms in the Case 2 Southern North Sea waters |
title_sort | development and application of an algorithm for detecting phaeocystis globosa blooms in the case 2 southern north sea waters |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639444/ https://www.ncbi.nlm.nih.gov/pubmed/19461860 http://dx.doi.org/10.1093/plankt/fbn116 |
work_keys_str_mv | AT astorecarosa developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT rousseauveronique developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT ruddickkevin developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT knechciakcecile developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT vanmolbarbara developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT parentjeanyves developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters AT lancelotchristiane developmentandapplicationofanalgorithmfordetectingphaeocystisglobosabloomsinthecase2southernnorthseawaters |