Cargando…

Molecular docking studies on DMDP derivatives as human DHFR inhibitors

Molecular docking is routinely used for understanding drug‐receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literatu...

Descripción completa

Detalles Bibliográficos
Autores principales: Srivastava, Vivek, Kumar, Ashutosh, Mishra, Bhartendu Nath, Siddiqi, Mohammad Imran
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639668/
https://www.ncbi.nlm.nih.gov/pubmed/19238244
Descripción
Sumario:Molecular docking is routinely used for understanding drug‐receptor interaction in modern drug design. Here, we describe the docking of 2, 4-diamino-5-methyl-5-deazapteridine (DMDP) derivatives as inhibitors to human dihydrofolate reductase (DHFR). We docked 78 DMDP derivates collected from literature to DHFR and studied their specific interactions with DHFR. A new shape-based method, LigandFit, was used for docking DMDP derivatives into DHFR active sites. The result indicates that the molecular docking approach is reliable and produces a good correlation coefficient (r(2) = 0.499) for the 73 compounds between docking score and IC(50) values (Inhibitory Activity). The chloro substituted naphthyl ring of compound 63 makes significant hydrophobic contact with Leu 22, Phe 31 and Pro 61 of the DHFR active site leading to enhanced inhibition of the enzyme. The docked complexes provide better insights to design more potent DHFR inhibitors prior to their synthesis.