Cargando…

Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima

BACKGROUND: Regeneration of neurons and fibers in the mammalian spinal cord has not been plausible, even though extensive studies have been made to understand the restrictive factors involved. New experimental models and strategies are necessary to determine how new nerve cells are generated and how...

Descripción completa

Detalles Bibliográficos
Autores principales: San Miguel-Ruiz, José E, Maldonado-Soto, Angel R, García-Arrarás, José E
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640377/
https://www.ncbi.nlm.nih.gov/pubmed/19126208
http://dx.doi.org/10.1186/1471-213X-9-3
_version_ 1782164566718808064
author San Miguel-Ruiz, José E
Maldonado-Soto, Angel R
García-Arrarás, José E
author_facet San Miguel-Ruiz, José E
Maldonado-Soto, Angel R
García-Arrarás, José E
author_sort San Miguel-Ruiz, José E
collection PubMed
description BACKGROUND: Regeneration of neurons and fibers in the mammalian spinal cord has not been plausible, even though extensive studies have been made to understand the restrictive factors involved. New experimental models and strategies are necessary to determine how new nerve cells are generated and how fibers regrow and connect with their targets in adult animals. Non-vertebrate deuterostomes might provide some answers to these questions. Echinoderms, with their amazing regenerative capacities could serve as model systems; however, very few studies have been done to study the regeneration of their nervous system. RESULTS: We have studied nerve cord regeneration in the echinoderm Holothuria glaberrima. These are sea cucumbers or holothurians members of the class Holothuroidea. One radial nerve cord, part of the echinoderm CNS, was completely transected using a scalpel blade. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in the radial nerve cord were analyzed using classical dyes and immmuohistochemistry. In addition, the temporal and spatial distribution of cell proliferation and apoptosis was assayed using BrdU incorporation and the TUNEL assay, respectively. We found that H. glaberrima can regenerate its radial nerve cord within a month following transection. The regenerated cord looks amazingly similar in overall morphology and cellular composition to the uninjured cord. The cellular events associated to radial cord regeneration include: (1) outgrowth of nerve fibers from the injured radial cord stumps, (2) intense cellular division in the cord stumps and in the regenerating radial nerve cords, (3) high levels of apoptosis in the RNC adjacent to the injury and within the regenerating cord and (4) an increase in the number of spherule-containing cells. These events are similar to those that occur in other body wall tissues during wound healing and during regeneration of the intestine. CONCLUSION: Our data indicate that holothurians are capable of rapid and complete regeneration of the main component of their CNS. Regeneration involves both the outgrowth of nerve fibers and the formation of neurons. Moreover, the cellular events employed during regeneration are similar to those involved in other regenerative processes, namely wound healing and intestinal regeneration. Thus, holothurians should be viewed as an alternative model where many of the questions regarding nervous system regeneration in deuterostomes could be answered.
format Text
id pubmed-2640377
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-26403772009-02-12 Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima San Miguel-Ruiz, José E Maldonado-Soto, Angel R García-Arrarás, José E BMC Dev Biol Research Article BACKGROUND: Regeneration of neurons and fibers in the mammalian spinal cord has not been plausible, even though extensive studies have been made to understand the restrictive factors involved. New experimental models and strategies are necessary to determine how new nerve cells are generated and how fibers regrow and connect with their targets in adult animals. Non-vertebrate deuterostomes might provide some answers to these questions. Echinoderms, with their amazing regenerative capacities could serve as model systems; however, very few studies have been done to study the regeneration of their nervous system. RESULTS: We have studied nerve cord regeneration in the echinoderm Holothuria glaberrima. These are sea cucumbers or holothurians members of the class Holothuroidea. One radial nerve cord, part of the echinoderm CNS, was completely transected using a scalpel blade. Animals were allowed to heal for up to four weeks (2, 6, 12, 20, and 28 days post-injury) before sacrificed. Tissues were sectioned in a cryostat and changes in the radial nerve cord were analyzed using classical dyes and immmuohistochemistry. In addition, the temporal and spatial distribution of cell proliferation and apoptosis was assayed using BrdU incorporation and the TUNEL assay, respectively. We found that H. glaberrima can regenerate its radial nerve cord within a month following transection. The regenerated cord looks amazingly similar in overall morphology and cellular composition to the uninjured cord. The cellular events associated to radial cord regeneration include: (1) outgrowth of nerve fibers from the injured radial cord stumps, (2) intense cellular division in the cord stumps and in the regenerating radial nerve cords, (3) high levels of apoptosis in the RNC adjacent to the injury and within the regenerating cord and (4) an increase in the number of spherule-containing cells. These events are similar to those that occur in other body wall tissues during wound healing and during regeneration of the intestine. CONCLUSION: Our data indicate that holothurians are capable of rapid and complete regeneration of the main component of their CNS. Regeneration involves both the outgrowth of nerve fibers and the formation of neurons. Moreover, the cellular events employed during regeneration are similar to those involved in other regenerative processes, namely wound healing and intestinal regeneration. Thus, holothurians should be viewed as an alternative model where many of the questions regarding nervous system regeneration in deuterostomes could be answered. BioMed Central 2009-01-06 /pmc/articles/PMC2640377/ /pubmed/19126208 http://dx.doi.org/10.1186/1471-213X-9-3 Text en Copyright © 2009 San Miguel-Ruiz et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
San Miguel-Ruiz, José E
Maldonado-Soto, Angel R
García-Arrarás, José E
Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title_full Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title_fullStr Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title_full_unstemmed Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title_short Regeneration of the radial nerve cord in the sea cucumber Holothuria glaberrima
title_sort regeneration of the radial nerve cord in the sea cucumber holothuria glaberrima
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2640377/
https://www.ncbi.nlm.nih.gov/pubmed/19126208
http://dx.doi.org/10.1186/1471-213X-9-3
work_keys_str_mv AT sanmiguelruizjosee regenerationoftheradialnervecordintheseacucumberholothuriaglaberrima
AT maldonadosotoangelr regenerationoftheradialnervecordintheseacucumberholothuriaglaberrima
AT garciaarrarasjosee regenerationoftheradialnervecordintheseacucumberholothuriaglaberrima