Cargando…

PASTAA: identifying transcription factors associated with sets of co-regulated genes

Motivation: A major challenge in regulatory genomics is the identification of associations between functional categories of genes (e.g. tissues, metabolic pathways) and their regulating transcription factors (TFs). While, for a limited number of categories, the regulating TFs are already known, stil...

Descripción completa

Detalles Bibliográficos
Autores principales: Roider, Helge G., Manke, Thomas, O'Keeffe, Sean, Vingron, Martin, Haas, Stefan A.
Formato: Texto
Lenguaje:English
Publicado: Oxford University Press 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642637/
https://www.ncbi.nlm.nih.gov/pubmed/19073590
http://dx.doi.org/10.1093/bioinformatics/btn627
_version_ 1782164637466230784
author Roider, Helge G.
Manke, Thomas
O'Keeffe, Sean
Vingron, Martin
Haas, Stefan A.
author_facet Roider, Helge G.
Manke, Thomas
O'Keeffe, Sean
Vingron, Martin
Haas, Stefan A.
author_sort Roider, Helge G.
collection PubMed
description Motivation: A major challenge in regulatory genomics is the identification of associations between functional categories of genes (e.g. tissues, metabolic pathways) and their regulating transcription factors (TFs). While, for a limited number of categories, the regulating TFs are already known, still for many functional categories the responsible factors remain to be elucidated. Results: We put forward a novel method (PASTAA) for detecting transcriptions factors associated with functional categories, which utilizes the prediction of binding affinities of a TF to promoters. This binding strength information is compared to the likelihood of membership of the corresponding genes in the functional category under study. Coherence between the two ranked datasets is seen as an indicator of association between a TF and the category. PASTAA is applied primarily to the determination of TFs driving tissue-specific expression. We show that PASTAA is capable of recovering many TFs acting tissue specifically and, in addition, provides novel associations so far not detected by alternative methods. The application of PASTAA to detect TFs involved in the regulation of tissue-specific gene expression revealed a remarkable number of experimentally supported associations. The validated success for various datasets implies that PASTAA can directly be applied for the detection of TFs associated with newly derived gene sets. Availability: The PASTAA source code as well as a corresponding web interface is freely available at http://trap.molgen.mpg.de Contact: roider@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
format Text
id pubmed-2642637
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-26426372009-02-25 PASTAA: identifying transcription factors associated with sets of co-regulated genes Roider, Helge G. Manke, Thomas O'Keeffe, Sean Vingron, Martin Haas, Stefan A. Bioinformatics Original Papers Motivation: A major challenge in regulatory genomics is the identification of associations between functional categories of genes (e.g. tissues, metabolic pathways) and their regulating transcription factors (TFs). While, for a limited number of categories, the regulating TFs are already known, still for many functional categories the responsible factors remain to be elucidated. Results: We put forward a novel method (PASTAA) for detecting transcriptions factors associated with functional categories, which utilizes the prediction of binding affinities of a TF to promoters. This binding strength information is compared to the likelihood of membership of the corresponding genes in the functional category under study. Coherence between the two ranked datasets is seen as an indicator of association between a TF and the category. PASTAA is applied primarily to the determination of TFs driving tissue-specific expression. We show that PASTAA is capable of recovering many TFs acting tissue specifically and, in addition, provides novel associations so far not detected by alternative methods. The application of PASTAA to detect TFs involved in the regulation of tissue-specific gene expression revealed a remarkable number of experimentally supported associations. The validated success for various datasets implies that PASTAA can directly be applied for the detection of TFs associated with newly derived gene sets. Availability: The PASTAA source code as well as a corresponding web interface is freely available at http://trap.molgen.mpg.de Contact: roider@molgen.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online. Oxford University Press 2009-02-15 2008-12-09 /pmc/articles/PMC2642637/ /pubmed/19073590 http://dx.doi.org/10.1093/bioinformatics/btn627 Text en © 2008 The Author(s) http://creativecommons.org/licenses/by-nc/2.0/uk/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Roider, Helge G.
Manke, Thomas
O'Keeffe, Sean
Vingron, Martin
Haas, Stefan A.
PASTAA: identifying transcription factors associated with sets of co-regulated genes
title PASTAA: identifying transcription factors associated with sets of co-regulated genes
title_full PASTAA: identifying transcription factors associated with sets of co-regulated genes
title_fullStr PASTAA: identifying transcription factors associated with sets of co-regulated genes
title_full_unstemmed PASTAA: identifying transcription factors associated with sets of co-regulated genes
title_short PASTAA: identifying transcription factors associated with sets of co-regulated genes
title_sort pastaa: identifying transcription factors associated with sets of co-regulated genes
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642637/
https://www.ncbi.nlm.nih.gov/pubmed/19073590
http://dx.doi.org/10.1093/bioinformatics/btn627
work_keys_str_mv AT roiderhelgeg pastaaidentifyingtranscriptionfactorsassociatedwithsetsofcoregulatedgenes
AT mankethomas pastaaidentifyingtranscriptionfactorsassociatedwithsetsofcoregulatedgenes
AT okeeffesean pastaaidentifyingtranscriptionfactorsassociatedwithsetsofcoregulatedgenes
AT vingronmartin pastaaidentifyingtranscriptionfactorsassociatedwithsetsofcoregulatedgenes
AT haasstefana pastaaidentifyingtranscriptionfactorsassociatedwithsetsofcoregulatedgenes