Cargando…
Factors acting on Mos1 transposition efficiency
BACKGROUND: Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposi...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642840/ https://www.ncbi.nlm.nih.gov/pubmed/19036139 http://dx.doi.org/10.1186/1471-2199-9-106 |
_version_ | 1782164664417779712 |
---|---|
author | Sinzelle, Ludivine Jégot, Gwenhael Brillet, Benjamin Rouleux-Bonnin, Florence Bigot, Yves Augé-Gouillou, Corinne |
author_facet | Sinzelle, Ludivine Jégot, Gwenhael Brillet, Benjamin Rouleux-Bonnin, Florence Bigot, Yves Augé-Gouillou, Corinne |
author_sort | Sinzelle, Ludivine |
collection | PubMed |
description | BACKGROUND: Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposition in vivo. RESULTS: The transposition of Mos1, first isolated from drosophila mauritiana, depends of both the nucleic acid sequence of the DNA stuffer (in terms of GC content), and its length. We provide the first in vitro experimental demonstration that MITEs of MLE origin, as small as 80 to 120-bp, are able to transpose. Excessive temperature down-regulates Mos1 transposition, yielding excision products unable to re-integrate. Finally, the super-helicity of the DNA transposon donor has a dramatic impact on the transposition efficiency. CONCLUSION: The study highlights how experimental conditions can bias interpretation of mariner excision frequency and quality. In vitro, the auto-integration pathway markedly limits transposition efficiency to new target sites, and this phenomenon may also limit events in the natural host. We propose a model for small transposons transposition that bypasses DNA bending constraints. |
format | Text |
id | pubmed-2642840 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26428402009-02-17 Factors acting on Mos1 transposition efficiency Sinzelle, Ludivine Jégot, Gwenhael Brillet, Benjamin Rouleux-Bonnin, Florence Bigot, Yves Augé-Gouillou, Corinne BMC Mol Biol Research Article BACKGROUND: Mariner-like elements (MLEs) are widespread DNA transposons in animal genomes. Although in vitro transposition reactions require only the transposase, various factors depending on the host, the physico-chemical environment and the transposon sequence can interfere with the MLEs transposition in vivo. RESULTS: The transposition of Mos1, first isolated from drosophila mauritiana, depends of both the nucleic acid sequence of the DNA stuffer (in terms of GC content), and its length. We provide the first in vitro experimental demonstration that MITEs of MLE origin, as small as 80 to 120-bp, are able to transpose. Excessive temperature down-regulates Mos1 transposition, yielding excision products unable to re-integrate. Finally, the super-helicity of the DNA transposon donor has a dramatic impact on the transposition efficiency. CONCLUSION: The study highlights how experimental conditions can bias interpretation of mariner excision frequency and quality. In vitro, the auto-integration pathway markedly limits transposition efficiency to new target sites, and this phenomenon may also limit events in the natural host. We propose a model for small transposons transposition that bypasses DNA bending constraints. BioMed Central 2008-11-26 /pmc/articles/PMC2642840/ /pubmed/19036139 http://dx.doi.org/10.1186/1471-2199-9-106 Text en Copyright © 2008 Sinzelle et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sinzelle, Ludivine Jégot, Gwenhael Brillet, Benjamin Rouleux-Bonnin, Florence Bigot, Yves Augé-Gouillou, Corinne Factors acting on Mos1 transposition efficiency |
title | Factors acting on Mos1 transposition efficiency |
title_full | Factors acting on Mos1 transposition efficiency |
title_fullStr | Factors acting on Mos1 transposition efficiency |
title_full_unstemmed | Factors acting on Mos1 transposition efficiency |
title_short | Factors acting on Mos1 transposition efficiency |
title_sort | factors acting on mos1 transposition efficiency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642840/ https://www.ncbi.nlm.nih.gov/pubmed/19036139 http://dx.doi.org/10.1186/1471-2199-9-106 |
work_keys_str_mv | AT sinzelleludivine factorsactingonmos1transpositionefficiency AT jegotgwenhael factorsactingonmos1transpositionefficiency AT brilletbenjamin factorsactingonmos1transpositionefficiency AT rouleuxbonninflorence factorsactingonmos1transpositionefficiency AT bigotyves factorsactingonmos1transpositionefficiency AT augegouilloucorinne factorsactingonmos1transpositionefficiency |