Cargando…
Diffusion-based spatial priors for imaging
We describe a Bayesian scheme to analyze images, which uses spatial priors encoded by a diffusion kernel, based on a weighted graph Laplacian. This provides a general framework to formulate a spatial model, whose parameters can be optimized. The application we have in mind is a spatiotemporal model...
Autores principales: | Harrison, L.M., Penny, W., Ashburner, J., Trujillo-Barreto, N., Friston, K.J. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643839/ https://www.ncbi.nlm.nih.gov/pubmed/17869542 http://dx.doi.org/10.1016/j.neuroimage.2007.07.032 |
Ejemplares similares
-
Diffusion-based spatial priors for functional magnetic resonance images
por: Harrison, L.M., et al.
Publicado: (2008) -
Extra-classical receptive field effects measured in striate cortex with fMRI
por: Harrison, L.M., et al.
Publicado: (2007) -
Efficient gradient computation for dynamical models
por: Sengupta, B., et al.
Publicado: (2014) -
A Symmetric Prior for the Regularisation of Elastic Deformations:
Improved anatomical plausibility in nonlinear image registration
por: Lange, Frederik J., et al.
Publicado: (2020) -
Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses
por: Crinion, Jenny, et al.
Publicado: (2007)