Cargando…

Plasticity of NMDA receptor NR2B subunit in memory and chronic pain

Glutamatergic synapses play critical roles in brain functions and diseases. Long-term potentiation (LTP) is a most effective cellular model for investigating the synaptic changes that underlie learning as well as brain disease – although different molecular mechanisms are likely involved in LTP in p...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhuo, Min
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644299/
https://www.ncbi.nlm.nih.gov/pubmed/19192303
http://dx.doi.org/10.1186/1756-6606-2-4
Descripción
Sumario:Glutamatergic synapses play critical roles in brain functions and diseases. Long-term potentiation (LTP) is a most effective cellular model for investigating the synaptic changes that underlie learning as well as brain disease – although different molecular mechanisms are likely involved in LTP in physiological and pathological conditions. In the case of learning, N-methyl-D-aspartate (NMDA) receptor is known to be important for triggering learning-related plasticity; alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptors are thought to be important for the expression of synaptic changes. In this review, I will examine recent evidence on the novel roles of NMDA receptors, in particular NR2B subunit-containing NMDA receptors in learning and chronic pain. A positive feedback control of NR2B receptor subunit is proposed to explain cortical sensitization involved in chronic pain, but not learning and memory.