Cargando…
Global rank-invariant set normalization (GRSN) to reduce systematic distortions in microarray data
BACKGROUND: Microarray technology has become very popular for globally evaluating gene expression in biological samples. However, non-linear variation associated with the technology can make data interpretation unreliable. Therefore, methods to correct this kind of technical variation are critical....
Autores principales: | Pelz, Carl R, Kulesz-Martin, Molly, Bagby, Grover, Sears, Rosalie C |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644708/ https://www.ncbi.nlm.nih.gov/pubmed/19055840 http://dx.doi.org/10.1186/1471-2105-9-520 |
Ejemplares similares
-
Iterative rank-order normalization of gene expression microarray data
por: Welsh, Eric A, et al.
Publicado: (2013) -
Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
por: Jain, Nitin, et al.
Publicado: (2005) -
Ranking analysis of F-statistics for microarray data
por: Tan, Yuan-De, et al.
Publicado: (2008) -
Rank Difference Analysis of Microarrays (RDAM), a novel approach to statistical analysis of microarray expression profiling data
por: Martin, Dietmar E, et al.
Publicado: (2004) -
A methodology for global validation of microarray experiments
por: Miron, Mathieu, et al.
Publicado: (2006)