Cargando…
Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography
BACKGROUND: To determine the optimal approach to delineating patient-specific internal gross target volumes (IGTV) from four-dimensional (4-D) computed tomography (CT) image data sets used in the planning of radiation treatment for lung cancers. METHODS: We analyzed 4D-CT image data sets of 27 conse...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645420/ https://www.ncbi.nlm.nih.gov/pubmed/19173738 http://dx.doi.org/10.1186/1748-717X-4-4 |
_version_ | 1782164785199054848 |
---|---|
author | Ezhil, Muthuveni Vedam, Sastry Balter, Peter Choi, Bum Mirkovic, Dragan Starkschall, George Chang, Joe Y |
author_facet | Ezhil, Muthuveni Vedam, Sastry Balter, Peter Choi, Bum Mirkovic, Dragan Starkschall, George Chang, Joe Y |
author_sort | Ezhil, Muthuveni |
collection | PubMed |
description | BACKGROUND: To determine the optimal approach to delineating patient-specific internal gross target volumes (IGTV) from four-dimensional (4-D) computed tomography (CT) image data sets used in the planning of radiation treatment for lung cancers. METHODS: We analyzed 4D-CT image data sets of 27 consecutive patients with non-small-cell lung cancer (stage I: 17, stage III: 10). The IGTV, defined to be the envelope of respiratory motion of the gross tumor volume in each 4D-CT data set was delineated manually using four techniques: (1) combining the gross tumor volume (GTV) contours from ten respiratory phases (IGTV(AllPhases)); (2) combining the GTV contours from two extreme respiratory phases (0% and 50%) (IGTV(2Phases)); (3) defining the GTV contour using the maximum intensity projection (MIP) (IGTV(MIP)); and (4) defining the GTV contour using the MIP with modification based on visual verification of contours in individual respiratory phase (IGTV(MIP-Modified)). Using the IGTV(AllPhases )as the optimum IGTV, we compared volumes, matching indices, and extent of target missing using the IGTVs based on the other three approaches. RESULTS: The IGTV(MIP )and IGTV(2Phases )were significantly smaller than the IGTV(AllPhases )(p < 0.006 for stage I and p < 0.002 for stage III). However, the values of the IGTV(MIP-Modified )were close to those determined from IGTV(AllPhases )(p = 0.08). IGTV(MIP-Modified )also matched the best with IGTV(AllPhases). CONCLUSION: IGTV(MIP )and IGTV(2Phases )underestimate IGTVs. IGTV(MIP-Modified )is recommended to improve IGTV delineation in lung cancer. |
format | Text |
id | pubmed-2645420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26454202009-02-20 Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography Ezhil, Muthuveni Vedam, Sastry Balter, Peter Choi, Bum Mirkovic, Dragan Starkschall, George Chang, Joe Y Radiat Oncol Research BACKGROUND: To determine the optimal approach to delineating patient-specific internal gross target volumes (IGTV) from four-dimensional (4-D) computed tomography (CT) image data sets used in the planning of radiation treatment for lung cancers. METHODS: We analyzed 4D-CT image data sets of 27 consecutive patients with non-small-cell lung cancer (stage I: 17, stage III: 10). The IGTV, defined to be the envelope of respiratory motion of the gross tumor volume in each 4D-CT data set was delineated manually using four techniques: (1) combining the gross tumor volume (GTV) contours from ten respiratory phases (IGTV(AllPhases)); (2) combining the GTV contours from two extreme respiratory phases (0% and 50%) (IGTV(2Phases)); (3) defining the GTV contour using the maximum intensity projection (MIP) (IGTV(MIP)); and (4) defining the GTV contour using the MIP with modification based on visual verification of contours in individual respiratory phase (IGTV(MIP-Modified)). Using the IGTV(AllPhases )as the optimum IGTV, we compared volumes, matching indices, and extent of target missing using the IGTVs based on the other three approaches. RESULTS: The IGTV(MIP )and IGTV(2Phases )were significantly smaller than the IGTV(AllPhases )(p < 0.006 for stage I and p < 0.002 for stage III). However, the values of the IGTV(MIP-Modified )were close to those determined from IGTV(AllPhases )(p = 0.08). IGTV(MIP-Modified )also matched the best with IGTV(AllPhases). CONCLUSION: IGTV(MIP )and IGTV(2Phases )underestimate IGTVs. IGTV(MIP-Modified )is recommended to improve IGTV delineation in lung cancer. BioMed Central 2009-01-27 /pmc/articles/PMC2645420/ /pubmed/19173738 http://dx.doi.org/10.1186/1748-717X-4-4 Text en Copyright © 2009 Ezhil et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Ezhil, Muthuveni Vedam, Sastry Balter, Peter Choi, Bum Mirkovic, Dragan Starkschall, George Chang, Joe Y Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title | Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title_full | Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title_fullStr | Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title_full_unstemmed | Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title_short | Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
title_sort | determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645420/ https://www.ncbi.nlm.nih.gov/pubmed/19173738 http://dx.doi.org/10.1186/1748-717X-4-4 |
work_keys_str_mv | AT ezhilmuthuveni determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT vedamsastry determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT balterpeter determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT choibum determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT mirkovicdragan determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT starkschallgeorge determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography AT changjoey determinationofpatientspecificinternalgrosstumorvolumesforlungcancerusingfourdimensionalcomputedtomography |