Cargando…
Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells
Multiple endocrine neoplasia type 1 (MEN1) is a dominantly inherited tumor syndrome that results from the mutation of the MEN1 gene that encodes protein menin. Stable overexpression of MEN1 has been shown to partially suppress the RAS-mediated morphological changes of NH3 fibroblast cells. Little is...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645484/ https://www.ncbi.nlm.nih.gov/pubmed/19079338 http://dx.doi.org/10.1038/onc.2008.435 |
_version_ | 1782164789713174528 |
---|---|
author | Yan, Jizhou Yang, Yuqing Zhang, Hui King, Catrina Kan, Ho-Man Cai, Ying Yuan, Chao-Xing Bloom, George S Hua, Xianxin |
author_facet | Yan, Jizhou Yang, Yuqing Zhang, Hui King, Catrina Kan, Ho-Man Cai, Ying Yuan, Chao-Xing Bloom, George S Hua, Xianxin |
author_sort | Yan, Jizhou |
collection | PubMed |
description | Multiple endocrine neoplasia type 1 (MEN1) is a dominantly inherited tumor syndrome that results from the mutation of the MEN1 gene that encodes protein menin. Stable overexpression of MEN1 has been shown to partially suppress the RAS-mediated morphological changes of NH3 fibroblast cells. Little is known about the molecular mechanisms by which menin decreases the oncogenic effects on cell morphology and other phenotypes. Here we showed that ectopic expression of menin in pretumor beta cells increases islet cell adhesion and reduces cell migration. Our further studies revealed that menin interacts with the scaffold protein, IQGAP1, reduces GTP-Rac1 interaction with IQGAP1 but increases E-cadherin/ß-catenin interaction with IQGAP1. Consistent with an essential role for menin in regulating ß cell adhesion in vivo, accumulations of β-catenin and E-cadherin are reduced at cell junctions in the islets from Men1-excised mice. Together, these results define a novel menin-IQGAP1 pathway that controls cell migration and cell-cell adhesion in endocrine cells. |
format | Text |
id | pubmed-2645484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
record_format | MEDLINE/PubMed |
spelling | pubmed-26454842009-08-19 Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells Yan, Jizhou Yang, Yuqing Zhang, Hui King, Catrina Kan, Ho-Man Cai, Ying Yuan, Chao-Xing Bloom, George S Hua, Xianxin Oncogene Article Multiple endocrine neoplasia type 1 (MEN1) is a dominantly inherited tumor syndrome that results from the mutation of the MEN1 gene that encodes protein menin. Stable overexpression of MEN1 has been shown to partially suppress the RAS-mediated morphological changes of NH3 fibroblast cells. Little is known about the molecular mechanisms by which menin decreases the oncogenic effects on cell morphology and other phenotypes. Here we showed that ectopic expression of menin in pretumor beta cells increases islet cell adhesion and reduces cell migration. Our further studies revealed that menin interacts with the scaffold protein, IQGAP1, reduces GTP-Rac1 interaction with IQGAP1 but increases E-cadherin/ß-catenin interaction with IQGAP1. Consistent with an essential role for menin in regulating ß cell adhesion in vivo, accumulations of β-catenin and E-cadherin are reduced at cell junctions in the islets from Men1-excised mice. Together, these results define a novel menin-IQGAP1 pathway that controls cell migration and cell-cell adhesion in endocrine cells. 2008-12-15 2009-02-19 /pmc/articles/PMC2645484/ /pubmed/19079338 http://dx.doi.org/10.1038/onc.2008.435 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Yan, Jizhou Yang, Yuqing Zhang, Hui King, Catrina Kan, Ho-Man Cai, Ying Yuan, Chao-Xing Bloom, George S Hua, Xianxin Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title | Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title_full | Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title_fullStr | Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title_full_unstemmed | Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title_short | Menin Interacts with IQGAP1 to Enhance Intercellular Adhesion of β Cells |
title_sort | menin interacts with iqgap1 to enhance intercellular adhesion of β cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645484/ https://www.ncbi.nlm.nih.gov/pubmed/19079338 http://dx.doi.org/10.1038/onc.2008.435 |
work_keys_str_mv | AT yanjizhou menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT yangyuqing menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT zhanghui menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT kingcatrina menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT kanhoman menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT caiying menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT yuanchaoxing menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT bloomgeorges menininteractswithiqgap1toenhanceintercellularadhesionofbcells AT huaxianxin menininteractswithiqgap1toenhanceintercellularadhesionofbcells |