Cargando…

Leptin Affects Life History Decisions in a Passerine Bird: A Field Experiment

BACKGROUND: Organisms face trade-offs regarding their life-history strategies, such as decisions of single or multiple broods within a year. In passerines displaying facultative multiple breeding, the probability of laying a second clutch is influenced by several life-history factors. However, infor...

Descripción completa

Detalles Bibliográficos
Autores principales: Lõhmus, Mare, Björklund, Mats
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645693/
https://www.ncbi.nlm.nih.gov/pubmed/19242553
http://dx.doi.org/10.1371/journal.pone.0004602
Descripción
Sumario:BACKGROUND: Organisms face trade-offs regarding their life-history strategies, such as decisions of single or multiple broods within a year. In passerines displaying facultative multiple breeding, the probability of laying a second clutch is influenced by several life-history factors. However, information about the mechanistic background of these trade-offs is largely lacking. Leptin is a protein hormone produced by white fat cells, and acts as a signal between peripheral energy depots and the central nervous system. In addition, leptin affects cells at all levels of the reproductive axis and plays a critical role in regulating the allocation of metabolic energy to reproduction. As such, it is possible that leptin levels influence the decision of whether or not to invest time and energy into a second clutch. Accordingly, we expect a treatment with exogenous leptin to result in an increased number of second broods. METHODOLOGY/PRINCIPAL FINDINGS: At a later stage during the first brood, female great tits were treated either with long-term leptin-filled cholesterol pellets (the experimental birds) or with pellets containing only cholesterol (the control birds). We found that leptin-treated females were significantly more likely to have a second brood and that the earlier females were more likely to lay a second clutch than the late females. CONCLUSIONS/SIGNIFICANCE: As both timing of first brood and treatment with leptin were important in the decision of having multiple broods, the trade-offs involved in the breeding strategy most likely depend on multiple factors. Presumably leptin has evolved as a signal of energy supply status to regulate the release of reproductive hormones so that reproduction is coordinated with periods of sufficient nutrients. This study investigated the role of leptin as a mediator between energy resources and reproductive output, providing a fundamentally new insight into how trade-offs work on a functional basis.