Cargando…

Robust methods for accurate diagnosis using pan-microbiological oligonucleotide microarrays

BACKGROUND: To address the limitations of traditional virus and pathogen detection methodologies in clinical diagnosis, scientists have developed high-throughput oligonucleotide microarrays to rapidly identify infectious agents. However, objectively identifying pathogens from the complex hybridizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yang, Sam, Lee, Li, Jianrong, Lussier, Yves A
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646242/
https://www.ncbi.nlm.nih.gov/pubmed/19208186
http://dx.doi.org/10.1186/1471-2105-10-S2-S11
Descripción
Sumario:BACKGROUND: To address the limitations of traditional virus and pathogen detection methodologies in clinical diagnosis, scientists have developed high-throughput oligonucleotide microarrays to rapidly identify infectious agents. However, objectively identifying pathogens from the complex hybridization patterns of these massively multiplexed arrays remains challenging. METHODS: In this study, we conceived an automated method based on the hypergeometric distribution for identifying pathogens in multiplexed arrays and compared it to five other methods. We evaluated these metrics: 1) accurate prediction, whether the top ranked prediction(s) match the real virus(es); 2) four accuracy scores. RESULTS: Though accurate prediction and high specificity and sensitivity can be achieved with several methods, the method based on hypergeometric distribution provides a significant advantage in term of positive predicting value with two to sixty folds the positive predicting values of other methods. CONCLUSION: The proposed multi-specie array analysis based on the hypergeometric distribution addresses shortcomings of previous methods by enhancing signals of positively hybridized probes.