Cargando…
Robust methods for accurate diagnosis using pan-microbiological oligonucleotide microarrays
BACKGROUND: To address the limitations of traditional virus and pathogen detection methodologies in clinical diagnosis, scientists have developed high-throughput oligonucleotide microarrays to rapidly identify infectious agents. However, objectively identifying pathogens from the complex hybridizati...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646242/ https://www.ncbi.nlm.nih.gov/pubmed/19208186 http://dx.doi.org/10.1186/1471-2105-10-S2-S11 |
Sumario: | BACKGROUND: To address the limitations of traditional virus and pathogen detection methodologies in clinical diagnosis, scientists have developed high-throughput oligonucleotide microarrays to rapidly identify infectious agents. However, objectively identifying pathogens from the complex hybridization patterns of these massively multiplexed arrays remains challenging. METHODS: In this study, we conceived an automated method based on the hypergeometric distribution for identifying pathogens in multiplexed arrays and compared it to five other methods. We evaluated these metrics: 1) accurate prediction, whether the top ranked prediction(s) match the real virus(es); 2) four accuracy scores. RESULTS: Though accurate prediction and high specificity and sensitivity can be achieved with several methods, the method based on hypergeometric distribution provides a significant advantage in term of positive predicting value with two to sixty folds the positive predicting values of other methods. CONCLUSION: The proposed multi-specie array analysis based on the hypergeometric distribution addresses shortcomings of previous methods by enhancing signals of positively hybridized probes. |
---|