Cargando…
Phenotype forecasting with SNPs data through gene-based Bayesian networks
BACKGROUND: Bayesian networks are powerful instruments to learn genetic models from association studies data. They are able to derive the existing correlation between genetic markers and phenotypic traits and, at the same time, to find the relationships between the markers themselves. However, learn...
Autores principales: | Malovini, Alberto, Nuzzo, Angelo, Ferrazzi, Fulvia, Puca, Annibale A, Bellazzi, Riccardo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646249/ https://www.ncbi.nlm.nih.gov/pubmed/19208195 http://dx.doi.org/10.1186/1471-2105-10-S2-S7 |
Ejemplares similares
-
Multi-Criteria Decision Making Approaches for Quality Control of Genome-Wide Association Studies
por: Malovini, Alberto, et al.
Publicado: (2009) -
Stochastic model search with binary outcomes for genome-wide association studies
por: Russu, Alberto, et al.
Publicado: (2012) -
Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks
por: Ferrazzi, Fulvia, et al.
Publicado: (2007) -
Application of Bayesian network structure learning to identify causal variant SNPs from resequencing data
por: Schlosberg, Christopher E, et al.
Publicado: (2011) -
Phenotypic and genotypic data integration and exploration through a web-service architecture
por: Nuzzo, Angelo, et al.
Publicado: (2009)