Cargando…
An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth
p120-catenin regulates epithelial cadherin stability and has been suggested to function as a tumor suppressor. In this study, we used anchorage-independent growth (AIG), a classical in vitro tumorigenicity assay, to examine the role of p120 in a different context, namely oncogene-mediated tumorigene...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646551/ https://www.ncbi.nlm.nih.gov/pubmed/19188496 http://dx.doi.org/10.1083/jcb.200807096 |
Sumario: | p120-catenin regulates epithelial cadherin stability and has been suggested to function as a tumor suppressor. In this study, we used anchorage-independent growth (AIG), a classical in vitro tumorigenicity assay, to examine the role of p120 in a different context, namely oncogene-mediated tumorigenesis. Surprisingly, p120 ablation by short hairpin RNA completely blocked AIG induced by both Rac1 and Src. This role for p120 was traced to its activity in suppression of the RhoA–ROCK pathway, which appears to be essential for AIG. Remarkably, the AIG block associated with p120 ablation was completely reversed by inhibition of the downstream RhoA effector ROCK. Harvey-Ras (H-Ras)–induced AIG was also dependent on suppression of the ROCK cascade but was p120 independent because its action on the pathway occurred downstream of p120. The data suggest that p120 modulates oncogenic signaling pathways important for AIG. Although H-Ras bypasses p120, a unifying theme for all three oncogenes is the requirement to suppress ROCK, which may act as a gatekeeper for the transition to anchorage independence. |
---|