Cargando…
Automated Alphabet Reduction for Protein Datasets
BACKGROUND: We investigate automated and generic alphabet reduction techniques for protein structure prediction datasets. Reducing alphabet cardinality without losing key biochemical information opens the door to potentially faster machine learning, data mining and optimization applications in struc...
Autores principales: | Bacardit, Jaume, Stout, Michael, Hirst, Jonathan D, Valencia, Alfonso, Smith, Robert E, Krasnogor, Natalio |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2646702/ https://www.ncbi.nlm.nih.gov/pubmed/19126227 http://dx.doi.org/10.1186/1471-2105-10-6 |
Ejemplares similares
-
Using Rule-Based Machine Learning for Candidate Disease Gene Prioritization and Sample Classification of Cancer Gene Expression Data
por: Glaab, Enrico, et al.
Publicado: (2012) -
Functional networks inference from rule-based machine learning models
por: Lazzarini, Nicola, et al.
Publicado: (2016) -
ProCKSI: a decision support system for Protein (Structure) Comparison, Knowledge, Similarity and Information
por: Barthel, Daniel, et al.
Publicado: (2007) -
Extending pathways and processes using molecular interaction networks to analyse cancer genome data
por: Glaab, Enrico, et al.
Publicado: (2010) -
TopoGSA: network topological gene set analysis
por: Glaab, Enrico, et al.
Publicado: (2010)