Cargando…
A marginalized variational bayesian approach to the analysis of array data
BACKGROUND: Bayesian unsupervised learning methods have many applications in the analysis of biological data. For example, for the cancer expression array datasets presented in this study, they can be used to resolve possible disease subtypes and to indicate statistically significant dysregulated ge...
Autores principales: | Ying, Yiming, Li, Peng, Campbell, Colin |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648311/ https://www.ncbi.nlm.nih.gov/pubmed/19091054 |
Ejemplares similares
-
Using a Bayesian latent variable approach to detect pleiotropy in the Genetic Analysis Workshop 18 data
por: Xu, Lizhen, et al.
Publicado: (2014) -
Identifying rare variants using a Bayesian regression approach
por: Yan, Aimin, et al.
Publicado: (2011) -
A Bayesian approach for estimating allele-specific expression from RNA-Seq data with diploid genomes
por: Nariai, Naoki, et al.
Publicado: (2016) -
A Bayesian approach for applying Haseman-Elston methods
por: Yoon, Seungtai, et al.
Publicado: (2005) -
A Bayesian mixed modeling approach for estimating heritability
por: Nustad, Haakon E., et al.
Publicado: (2018)