Cargando…
A voting approach to identify a small number of highly predictive genes using multiple classifiers
BACKGROUND: Microarray gene expression profiling has provided extensive datasets that can describe characteristics of cancer patients. An important challenge for this type of data is the discovery of gene sets which can be used as the basis of developing a clinical predictor for cancer. It is desira...
Autores principales: | Hassan, Md Rafiul, Hossain, M Maruf, Bailey, James, Macintyre, Geoff, Ho, Joshua WK, Ramamohanarao, Kotagiri |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648737/ https://www.ncbi.nlm.nih.gov/pubmed/19208118 http://dx.doi.org/10.1186/1471-2105-10-S1-S19 |
Ejemplares similares
-
A new approach to enhance the performance of decision tree for classifying gene expression data
por: Hassan, Md Rafiul, et al.
Publicado: (2013) -
Prediction of disease-related miRNAs by voting with multiple classifiers
por: Gu, Changlong, et al.
Publicado: (2023) -
A fast indexing approach for protein structure comparison
por: Zhang, Lei, et al.
Publicado: (2010) -
Adapted Deep Ensemble Learning-Based Voting Classifier for Osteosarcoma Cancer Classification
por: Walid, Md. Abul Ala, et al.
Publicado: (2023) -
Integrating LASSO Feature Selection and Soft Voting Classifier to Identify Origins of Replication Sites
por: Yao, Yingying, et al.
Publicado: (2022)