Cargando…
Predicting disordered regions in proteins using the profiles of amino acid indices
BACKGROUND: Intrinsically unstructured or disordered proteins are common and functionally important. Prediction of disordered regions in proteins can provide useful information for understanding protein function and for high-throughput determination of protein structures. RESULTS: In this paper, alg...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648739/ https://www.ncbi.nlm.nih.gov/pubmed/19208144 http://dx.doi.org/10.1186/1471-2105-10-S1-S42 |
_version_ | 1782164976839950336 |
---|---|
author | Han, Pengfei Zhang, Xiuzhen Feng, Zhi-Ping |
author_facet | Han, Pengfei Zhang, Xiuzhen Feng, Zhi-Ping |
author_sort | Han, Pengfei |
collection | PubMed |
description | BACKGROUND: Intrinsically unstructured or disordered proteins are common and functionally important. Prediction of disordered regions in proteins can provide useful information for understanding protein function and for high-throughput determination of protein structures. RESULTS: In this paper, algorithms are presented to predict long and short disordered regions in proteins, namely the long disordered region prediction algorithm DRaai-L and the short disordered region prediction algorithm DRaai-S. These algorithms are developed based on the Random Forest machine learning model and the profiles of amino acid indices representing various physiochemical and biochemical properties of the 20 amino acids. CONCLUSION: Experiments on DisProt3.6 and CASP7 demonstrate that some sets of the amino acid indices have strong association with the ordered and disordered status of residues. Our algorithms based on the profiles of these amino acid indices as input features to predict disordered regions in proteins outperform that based on amino acid composition and reduced amino acid composition, and also outperform many existing algorithms. Our studies suggest that the profiles of amino acid indices combined with the Random Forest learning model is an important complementary method for pinpointing disordered regions in proteins. |
format | Text |
id | pubmed-2648739 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26487392009-03-03 Predicting disordered regions in proteins using the profiles of amino acid indices Han, Pengfei Zhang, Xiuzhen Feng, Zhi-Ping BMC Bioinformatics Research BACKGROUND: Intrinsically unstructured or disordered proteins are common and functionally important. Prediction of disordered regions in proteins can provide useful information for understanding protein function and for high-throughput determination of protein structures. RESULTS: In this paper, algorithms are presented to predict long and short disordered regions in proteins, namely the long disordered region prediction algorithm DRaai-L and the short disordered region prediction algorithm DRaai-S. These algorithms are developed based on the Random Forest machine learning model and the profiles of amino acid indices representing various physiochemical and biochemical properties of the 20 amino acids. CONCLUSION: Experiments on DisProt3.6 and CASP7 demonstrate that some sets of the amino acid indices have strong association with the ordered and disordered status of residues. Our algorithms based on the profiles of these amino acid indices as input features to predict disordered regions in proteins outperform that based on amino acid composition and reduced amino acid composition, and also outperform many existing algorithms. Our studies suggest that the profiles of amino acid indices combined with the Random Forest learning model is an important complementary method for pinpointing disordered regions in proteins. BioMed Central 2009-01-30 /pmc/articles/PMC2648739/ /pubmed/19208144 http://dx.doi.org/10.1186/1471-2105-10-S1-S42 Text en Copyright © 2009 Han et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Han, Pengfei Zhang, Xiuzhen Feng, Zhi-Ping Predicting disordered regions in proteins using the profiles of amino acid indices |
title | Predicting disordered regions in proteins using the profiles of amino acid indices |
title_full | Predicting disordered regions in proteins using the profiles of amino acid indices |
title_fullStr | Predicting disordered regions in proteins using the profiles of amino acid indices |
title_full_unstemmed | Predicting disordered regions in proteins using the profiles of amino acid indices |
title_short | Predicting disordered regions in proteins using the profiles of amino acid indices |
title_sort | predicting disordered regions in proteins using the profiles of amino acid indices |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648739/ https://www.ncbi.nlm.nih.gov/pubmed/19208144 http://dx.doi.org/10.1186/1471-2105-10-S1-S42 |
work_keys_str_mv | AT hanpengfei predictingdisorderedregionsinproteinsusingtheprofilesofaminoacidindices AT zhangxiuzhen predictingdisorderedregionsinproteinsusingtheprofilesofaminoacidindices AT fengzhiping predictingdisorderedregionsinproteinsusingtheprofilesofaminoacidindices |