Cargando…
A method to improve protein subcellular localization prediction by integrating various biological data sources
BACKGROUND: Protein subcellular localization is crucial information to elucidate protein functions. Owing to the need for large-scale genome analysis, computational method for efficiently predicting protein subcellular localization is highly required. Although many previous works have been done for...
Autores principales: | Tung, Thai Quang, Lee, Doheon |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648781/ https://www.ncbi.nlm.nih.gov/pubmed/19208145 http://dx.doi.org/10.1186/1471-2105-10-S1-S43 |
Ejemplares similares
-
PSExplorer: whole parameter space exploration for molecular signaling pathway dynamics
por: Tung, Thai Quang, et al.
Publicado: (2010) -
Prediction of RNA subcellular localization: Learning from heterogeneous data sources
por: Savulescu, Anca Flavia, et al.
Publicado: (2021) -
ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins
por: Garg, Aarti, et al.
Publicado: (2008) -
Human Protein Subcellular Localization with Integrated Source and Multi-label Ensemble Classifier
por: Guo, Xiaotong, et al.
Publicado: (2016) -
Evaluation and comparison of mammalian subcellular localization prediction methods
por: Sprenger, Josefine, et al.
Publicado: (2006)