Cargando…
Quality assessment of tandem mass spectra using support vector machine (SVM)
BACKGROUND: Tandem mass spectrometry has become particularly useful for the rapid identification and characterization of protein components of complex biological mixtures. Powerful database search methods have been developed for the peptide identification, such as SEQUEST and MASCOT, which are imple...
Autores principales: | Zou, An-Min, Wu, Fang-Xiang, Ding, Jia-Rui, Poirier, Guy G |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648784/ https://www.ncbi.nlm.nih.gov/pubmed/19208151 http://dx.doi.org/10.1186/1471-2105-10-S1-S49 |
Ejemplares similares
-
Quality assessment of peptide tandem mass spectra
por: Wu, Fang-Xiang, et al.
Publicado: (2008) -
A novel approach to denoising ion trap tandem mass spectra
por: Ding, Jiarui, et al.
Publicado: (2009) -
An unsupervised machine learning method for assessing quality of tandem mass spectra
por: Lin, Wenjun, et al.
Publicado: (2012) -
CompareSVM: supervised, Support Vector Machine (SVM) inference of gene regularity networks
por: Gillani, Zeeshan, et al.
Publicado: (2014) -
Data on Support Vector Machines (SVM) model to forecast photovoltaic power
por: Malvoni, M., et al.
Publicado: (2016)