Cargando…

Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence

Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradi...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatterjee, Chandrajit, Sarkar, Ram Rup
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648889/
https://www.ncbi.nlm.nih.gov/pubmed/19266093
http://dx.doi.org/10.1371/journal.pone.0004726
_version_ 1782164993891893248
author Chatterjee, Chandrajit
Sarkar, Ram Rup
author_facet Chatterjee, Chandrajit
Sarkar, Ram Rup
author_sort Chatterjee, Chandrajit
collection PubMed
description Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradication. Thus, development of suitable modeling approach and methodology, based on the available data on the incidence of the disease and other related factors is of utmost importance. In this study, we developed a simple non-linear regression methodology in modeling and forecasting malaria incidence in Chennai city, India, and predicted future disease incidence with high confidence level. We considered three types of data to develop the regression methodology: a longer time series data of Slide Positivity Rates (SPR) of malaria; a smaller time series data (deaths due to Plasmodium vivax) of one year; and spatial data (zonal distribution of P. vivax deaths) for the city along with the climatic factors, population and previous incidence of the disease. We performed variable selection by simple correlation study, identification of the initial relationship between variables through non-linear curve fitting and used multi-step methods for induction of variables in the non-linear regression analysis along with applied Gauss-Markov models, and ANOVA for testing the prediction, validity and constructing the confidence intervals. The results execute the applicability of our method for different types of data, the autoregressive nature of forecasting, and show high prediction power for both SPR and P. vivax deaths, where the one-lag SPR values plays an influential role and proves useful for better prediction. Different climatic factors are identified as playing crucial role on shaping the disease curve. Further, disease incidence at zonal level and the effect of causative factors on different zonal clusters indicate the pattern of malaria prevalence in the city. The study also demonstrates that with excellent models of climatic forecasts readily available, using this method one can predict the disease incidence at long forecasting horizons, with high degree of efficiency and based on such technique a useful early warning system can be developed region wise or nation wise for disease prevention and control activities.
format Text
id pubmed-2648889
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-26488892009-03-06 Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence Chatterjee, Chandrajit Sarkar, Ram Rup PLoS One Research Article Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradication. Thus, development of suitable modeling approach and methodology, based on the available data on the incidence of the disease and other related factors is of utmost importance. In this study, we developed a simple non-linear regression methodology in modeling and forecasting malaria incidence in Chennai city, India, and predicted future disease incidence with high confidence level. We considered three types of data to develop the regression methodology: a longer time series data of Slide Positivity Rates (SPR) of malaria; a smaller time series data (deaths due to Plasmodium vivax) of one year; and spatial data (zonal distribution of P. vivax deaths) for the city along with the climatic factors, population and previous incidence of the disease. We performed variable selection by simple correlation study, identification of the initial relationship between variables through non-linear curve fitting and used multi-step methods for induction of variables in the non-linear regression analysis along with applied Gauss-Markov models, and ANOVA for testing the prediction, validity and constructing the confidence intervals. The results execute the applicability of our method for different types of data, the autoregressive nature of forecasting, and show high prediction power for both SPR and P. vivax deaths, where the one-lag SPR values plays an influential role and proves useful for better prediction. Different climatic factors are identified as playing crucial role on shaping the disease curve. Further, disease incidence at zonal level and the effect of causative factors on different zonal clusters indicate the pattern of malaria prevalence in the city. The study also demonstrates that with excellent models of climatic forecasts readily available, using this method one can predict the disease incidence at long forecasting horizons, with high degree of efficiency and based on such technique a useful early warning system can be developed region wise or nation wise for disease prevention and control activities. Public Library of Science 2009-03-06 /pmc/articles/PMC2648889/ /pubmed/19266093 http://dx.doi.org/10.1371/journal.pone.0004726 Text en Chatterjee et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Chatterjee, Chandrajit
Sarkar, Ram Rup
Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title_full Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title_fullStr Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title_full_unstemmed Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title_short Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
title_sort multi-step polynomial regression method to model and forecast malaria incidence
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648889/
https://www.ncbi.nlm.nih.gov/pubmed/19266093
http://dx.doi.org/10.1371/journal.pone.0004726
work_keys_str_mv AT chatterjeechandrajit multisteppolynomialregressionmethodtomodelandforecastmalariaincidence
AT sarkarramrup multisteppolynomialregressionmethodtomodelandforecastmalariaincidence