Cargando…
Multi-Step Polynomial Regression Method to Model and Forecast Malaria Incidence
Malaria is one of the most severe problems faced by the world even today. Understanding the causative factors such as age, sex, social factors, environmental variability etc. as well as underlying transmission dynamics of the disease is important for epidemiological research on malaria and its eradi...
Autores principales: | Chatterjee, Chandrajit, Sarkar, Ram Rup |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648889/ https://www.ncbi.nlm.nih.gov/pubmed/19266093 http://dx.doi.org/10.1371/journal.pone.0004726 |
Ejemplares similares
-
Forecasting COVID-19 outbreak progression using hybrid polynomial-Bayesian ridge regression model
por: Saqib, Mohd
Publicado: (2020) -
Evolutionary polynomial regression improved by regularization methods
por: Li, Yao, et al.
Publicado: (2023) -
Mathematical models of malaria - a review
por: Mandal, Sandip, et al.
Publicado: (2011) -
Theoretical investigation of malaria prevalence in two Indian cities using the response surface method
por: Roy, Sayantani Basu, et al.
Publicado: (2011) -
A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China
por: Yang, Enbin, et al.
Publicado: (2022)