Cargando…
Microarray background correction: maximum likelihood estimation for the normal–exponential convolution
Background correction is an important preprocessing step for microarray data that attempts to adjust the data for the ambient intensity surrounding each feature. The “normexp” method models the observed pixel intensities as the sum of 2 random variables, one normally distributed and the other expone...
Autores principales: | Silver, Jeremy D., Ritchie, Matthew E., Smyth, Gordon K. |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648902/ https://www.ncbi.nlm.nih.gov/pubmed/19068485 http://dx.doi.org/10.1093/biostatistics/kxn042 |
Ejemplares similares
-
Maximum Penalized Likelihood Estimation
por: LaRiccia, Vincent N, et al.
Publicado: (2009) -
Correction: New Maximum Likelihood Estimators for Eukaryotic Intron Evolution
por: Nguyen, Hung D, et al.
Publicado: (2006) -
Maximum likelihood estimation of functional relationships
por: Nagelkerke, Nico J D
Publicado: (1992) -
Quasi-maximum exponential likelihood estimator and portmanteau test of double [Formula: see text] model based on [Formula: see text]
por: Xuan, Haiyan, et al.
Publicado: (2018) -
Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies
por: Hashemi, Meraj, et al.
Publicado: (2021)