Cargando…

Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling

The role of non-Smad proteins in the regulation of transforming growth factor-β (TGFβ) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFβ-inducible, non-Smad protein that silences the TGFβ receptor II (TGFβRII) promoter. Together with endocytosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Truty, Mark J., Lomberk, Gwen, Fernandez-Zapico, Martin E., Urrutia, Raul
Formato: Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649086/
https://www.ncbi.nlm.nih.gov/pubmed/19088080
http://dx.doi.org/10.1074/jbc.M807791200
_version_ 1782165021318447104
author Truty, Mark J.
Lomberk, Gwen
Fernandez-Zapico, Martin E.
Urrutia, Raul
author_facet Truty, Mark J.
Lomberk, Gwen
Fernandez-Zapico, Martin E.
Urrutia, Raul
author_sort Truty, Mark J.
collection PubMed
description The role of non-Smad proteins in the regulation of transforming growth factor-β (TGFβ) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFβ-inducible, non-Smad protein that silences the TGFβ receptor II (TGFβRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFβ receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFβ inducibility, its ability to regulate the TGFβRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFβRII, a function that is augmented by TGFβ treatment. Mapping of the TGFβRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFβRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFβ pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFβRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFβRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFβRII and further expand the network of non-Smad transcription factors that participate in the TGFβ pathway.
format Text
id pubmed-2649086
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-26490862009-03-06 Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling Truty, Mark J. Lomberk, Gwen Fernandez-Zapico, Martin E. Urrutia, Raul J Biol Chem Transcription, Chromatin, and Epigenetics The role of non-Smad proteins in the regulation of transforming growth factor-β (TGFβ) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFβ-inducible, non-Smad protein that silences the TGFβ receptor II (TGFβRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFβ receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFβ inducibility, its ability to regulate the TGFβRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFβRII, a function that is augmented by TGFβ treatment. Mapping of the TGFβRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFβRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFβ pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFβRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFβRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFβRII and further expand the network of non-Smad transcription factors that participate in the TGFβ pathway. American Society for Biochemistry and Molecular Biology 2009-03-06 /pmc/articles/PMC2649086/ /pubmed/19088080 http://dx.doi.org/10.1074/jbc.M807791200 Text en Copyright © 2009, The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles
spellingShingle Transcription, Chromatin, and Epigenetics
Truty, Mark J.
Lomberk, Gwen
Fernandez-Zapico, Martin E.
Urrutia, Raul
Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title_full Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title_fullStr Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title_full_unstemmed Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title_short Silencing of the Transforming Growth Factor-β (TGFβ) Receptor II by Krüppel-like Factor 14 Underscores the Importance of a Negative Feedback Mechanism in TGFβ Signaling
title_sort silencing of the transforming growth factor-β (tgfβ) receptor ii by krüppel-like factor 14 underscores the importance of a negative feedback mechanism in tgfβ signaling
topic Transcription, Chromatin, and Epigenetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649086/
https://www.ncbi.nlm.nih.gov/pubmed/19088080
http://dx.doi.org/10.1074/jbc.M807791200
work_keys_str_mv AT trutymarkj silencingofthetransforminggrowthfactorbtgfbreceptoriibykruppellikefactor14underscorestheimportanceofanegativefeedbackmechanismintgfbsignaling
AT lomberkgwen silencingofthetransforminggrowthfactorbtgfbreceptoriibykruppellikefactor14underscorestheimportanceofanegativefeedbackmechanismintgfbsignaling
AT fernandezzapicomartine silencingofthetransforminggrowthfactorbtgfbreceptoriibykruppellikefactor14underscorestheimportanceofanegativefeedbackmechanismintgfbsignaling
AT urrutiaraul silencingofthetransforminggrowthfactorbtgfbreceptoriibykruppellikefactor14underscorestheimportanceofanegativefeedbackmechanismintgfbsignaling