Cargando…
A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649202/ https://www.ncbi.nlm.nih.gov/pubmed/19255631 http://dx.doi.org/10.3389/neuro.10.001.2009 |
_version_ | 1782165033878290432 |
---|---|
author | Faugeras, Olivier Touboul, Jonathan Cessac, Bruno |
author_facet | Faugeras, Olivier Touboul, Jonathan Cessac, Bruno |
author_sort | Faugeras, Olivier |
collection | PubMed |
description | We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. |
format | Text |
id | pubmed-2649202 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-26492022009-03-02 A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs Faugeras, Olivier Touboul, Jonathan Cessac, Bruno Front Comput Neurosci Neuroscience We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean-field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit (1995): their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales. Frontiers Research Foundation 2009-02-18 /pmc/articles/PMC2649202/ /pubmed/19255631 http://dx.doi.org/10.3389/neuro.10.001.2009 Text en Copyright © 2009 Faugeras, Touboul and Cessac. http://www.frontiersin.org/licenseagreement This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution and reproduction in any medium, provided the original authors and source are credited. |
spellingShingle | Neuroscience Faugeras, Olivier Touboul, Jonathan Cessac, Bruno A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title | A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title_full | A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title_fullStr | A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title_full_unstemmed | A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title_short | A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs |
title_sort | constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649202/ https://www.ncbi.nlm.nih.gov/pubmed/19255631 http://dx.doi.org/10.3389/neuro.10.001.2009 |
work_keys_str_mv | AT faugerasolivier aconstructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs AT toubouljonathan aconstructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs AT cessacbruno aconstructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs AT faugerasolivier constructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs AT toubouljonathan constructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs AT cessacbruno constructivemeanfieldanalysisofmultipopulationneuralnetworkswithrandomsynapticweightsandstochasticinputs |