Cargando…
A Constructive Mean-Field Analysis of Multi-Population Neural Networks with Random Synaptic Weights and Stochastic Inputs
We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled...
Autores principales: | Faugeras, Olivier, Touboul, Jonathan, Cessac, Bruno |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649202/ https://www.ncbi.nlm.nih.gov/pubmed/19255631 http://dx.doi.org/10.3389/neuro.10.001.2009 |
Ejemplares similares
-
A maximum likelihood estimator of neural network synaptic weights
por: Taouali, Wahiba, et al.
Publicado: (2013) -
Beyond dynamical mean-field theory of neural networks
por: Muratori, Massimiliano, et al.
Publicado: (2013) -
Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
por: Baladron, Javier, et al.
Publicado: (2012) -
Stochastic neural field equations: a rigorous footing
por: Faugeras, O., et al.
Publicado: (2014) -
Event-driven mathematical framework for noisy integrate-and-fire neuron networks: spike trains statistics via stochastic calculus, network analysis inspired by queuing theory and an event-driven simulator
por: Touboul, Jonathan, et al.
Publicado: (2007)