Cargando…
Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies
Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding pop...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649211/ https://www.ncbi.nlm.nih.gov/pubmed/19266100 http://dx.doi.org/10.1371/journal.pone.0004729 |
_version_ | 1782165034339663872 |
---|---|
author | Aldinger, Kimberly A. Sokoloff, Greta Rosenberg, David M. Palmer, Abraham A. Millen, Kathleen J. |
author_facet | Aldinger, Kimberly A. Sokoloff, Greta Rosenberg, David M. Palmer, Abraham A. Millen, Kathleen J. |
author_sort | Aldinger, Kimberly A. |
collection | PubMed |
description | Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice. |
format | Text |
id | pubmed-2649211 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26492112009-03-06 Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies Aldinger, Kimberly A. Sokoloff, Greta Rosenberg, David M. Palmer, Abraham A. Millen, Kathleen J. PLoS One Research Article Outbred laboratory mouse populations are widely used in biomedical research. Since little is known about the degree of genetic variation present in these populations, they are not widely used for genetic studies. Commercially available outbred CD-1 mice are drawn from an extremely large breeding population that has accumulated many recombination events, which is desirable for genome-wide association studies. We therefore examined the degree of genome-wide variation within CD-1 mice to investigate their suitability for genetic studies. The CD-1 mouse genome displays patterns of linkage disequilibrium and heterogeneity similar to wild-caught mice. Population substructure and phenotypic differences were observed among CD-1 mice obtained from different breeding facilities. Differences in genetic variation among CD-1 mice from distinct facilities were similar to genetic differences detected between closely related human populations, consistent with a founder effect. This first large-scale genetic analysis of the outbred CD-1 mouse strain provides important considerations for the design and analysis of genetic studies in CD-1 mice. Public Library of Science 2009-03-06 /pmc/articles/PMC2649211/ /pubmed/19266100 http://dx.doi.org/10.1371/journal.pone.0004729 Text en Aldinger et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Aldinger, Kimberly A. Sokoloff, Greta Rosenberg, David M. Palmer, Abraham A. Millen, Kathleen J. Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title | Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title_full | Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title_fullStr | Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title_full_unstemmed | Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title_short | Genetic Variation and Population Substructure in Outbred CD-1 Mice: Implications for Genome-Wide Association Studies |
title_sort | genetic variation and population substructure in outbred cd-1 mice: implications for genome-wide association studies |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649211/ https://www.ncbi.nlm.nih.gov/pubmed/19266100 http://dx.doi.org/10.1371/journal.pone.0004729 |
work_keys_str_mv | AT aldingerkimberlya geneticvariationandpopulationsubstructureinoutbredcd1miceimplicationsforgenomewideassociationstudies AT sokoloffgreta geneticvariationandpopulationsubstructureinoutbredcd1miceimplicationsforgenomewideassociationstudies AT rosenbergdavidm geneticvariationandpopulationsubstructureinoutbredcd1miceimplicationsforgenomewideassociationstudies AT palmerabrahama geneticvariationandpopulationsubstructureinoutbredcd1miceimplicationsforgenomewideassociationstudies AT millenkathleenj geneticvariationandpopulationsubstructureinoutbredcd1miceimplicationsforgenomewideassociationstudies |