Cargando…

Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization

Atrial fibrillation (AF) is a frequent chronic dysrythmia with an incidence that increases with age (>40). Because of its medical and socio-economic impacts it is expected to become an increasing burden on most health care systems. AF is a multi-factorial disease for which the identification of s...

Descripción completa

Detalles Bibliográficos
Autores principales: Vanhoutte, Kurt, de Asmundis, Carlo, Francesconi, Anna, Figys1, Jurgen, Steurs, Griet, Boussy, Tim, Roos, Markus, Mueller, Andreas, Massimo, Lucio, Paparella, Gaetano, Van Caelenberg, Kristien, Chierchia, Gian Battista, Sarkozy, Andrea, Y Terradellas, Pedro Brugada, Zizi, Martin
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649423/
https://www.ncbi.nlm.nih.gov/pubmed/19255648
_version_ 1782165048607637504
author Vanhoutte, Kurt
de Asmundis, Carlo
Francesconi, Anna
Figys1, Jurgen
Steurs, Griet
Boussy, Tim
Roos, Markus
Mueller, Andreas
Massimo, Lucio
Paparella, Gaetano
Van Caelenberg, Kristien
Chierchia, Gian Battista
Sarkozy, Andrea
Y Terradellas, Pedro Brugada
Zizi, Martin
author_facet Vanhoutte, Kurt
de Asmundis, Carlo
Francesconi, Anna
Figys1, Jurgen
Steurs, Griet
Boussy, Tim
Roos, Markus
Mueller, Andreas
Massimo, Lucio
Paparella, Gaetano
Van Caelenberg, Kristien
Chierchia, Gian Battista
Sarkozy, Andrea
Y Terradellas, Pedro Brugada
Zizi, Martin
author_sort Vanhoutte, Kurt
collection PubMed
description Atrial fibrillation (AF) is a frequent chronic dysrythmia with an incidence that increases with age (>40). Because of its medical and socio-economic impacts it is expected to become an increasing burden on most health care systems. AF is a multi-factorial disease for which the identification of subtypes is warranted. Novel approaches based on the broad concepts of systems biology may overcome the blurred notion of normal and pathological phenotype, which is inherent to high throughput molecular arrays analysis. Here we apply an internal contrast algorithm on AF patient data with an analytical focus on potential entry pathways into the disease. We used a RMA (Robust Multichip Average) normalized Affymetrix micro-array data set from 10 AF patients (geo_accession #GSE2240). Four series of probes were selected based on physiopathogenic links with AF entryways: apoptosis (remodeling), MAP kinase (cell remodeling), OXPHOS (ability to sustain hemodynamic workload) and glycolysis (ischemia). Annotated probe lists were polled with Bioconductor packages in R (version 2.7.1). Genetic profile contrasts were analysed with hierarchical clustering and principal component analysis. The analysis revealed distinct patient groups for all probe sets. A substantial part (54% till 67%) of the variance is explained in the first 2 principal components. Genes in PC1/2 with high discriminatory value were selected and analyzed in detail. We aim for reliable molecular stratification of AF. We show that stratification is possible based on physiologically relevant gene sets. Genes with high contrast value are likely to give pathophysiological insight into permanent AF subtypes.
format Text
id pubmed-2649423
institution National Center for Biotechnology Information
language English
publishDate 2009
publisher Biomedical Informatics Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-26494232009-03-02 Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization Vanhoutte, Kurt de Asmundis, Carlo Francesconi, Anna Figys1, Jurgen Steurs, Griet Boussy, Tim Roos, Markus Mueller, Andreas Massimo, Lucio Paparella, Gaetano Van Caelenberg, Kristien Chierchia, Gian Battista Sarkozy, Andrea Y Terradellas, Pedro Brugada Zizi, Martin Bioinformation Prediction Model Atrial fibrillation (AF) is a frequent chronic dysrythmia with an incidence that increases with age (>40). Because of its medical and socio-economic impacts it is expected to become an increasing burden on most health care systems. AF is a multi-factorial disease for which the identification of subtypes is warranted. Novel approaches based on the broad concepts of systems biology may overcome the blurred notion of normal and pathological phenotype, which is inherent to high throughput molecular arrays analysis. Here we apply an internal contrast algorithm on AF patient data with an analytical focus on potential entry pathways into the disease. We used a RMA (Robust Multichip Average) normalized Affymetrix micro-array data set from 10 AF patients (geo_accession #GSE2240). Four series of probes were selected based on physiopathogenic links with AF entryways: apoptosis (remodeling), MAP kinase (cell remodeling), OXPHOS (ability to sustain hemodynamic workload) and glycolysis (ischemia). Annotated probe lists were polled with Bioconductor packages in R (version 2.7.1). Genetic profile contrasts were analysed with hierarchical clustering and principal component analysis. The analysis revealed distinct patient groups for all probe sets. A substantial part (54% till 67%) of the variance is explained in the first 2 principal components. Genes in PC1/2 with high discriminatory value were selected and analyzed in detail. We aim for reliable molecular stratification of AF. We show that stratification is possible based on physiologically relevant gene sets. Genes with high contrast value are likely to give pathophysiological insight into permanent AF subtypes. Biomedical Informatics Publishing Group 2009-01-12 /pmc/articles/PMC2649423/ /pubmed/19255648 Text en © 2009 Biomedical Informatics Publishing Group This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited.
spellingShingle Prediction Model
Vanhoutte, Kurt
de Asmundis, Carlo
Francesconi, Anna
Figys1, Jurgen
Steurs, Griet
Boussy, Tim
Roos, Markus
Mueller, Andreas
Massimo, Lucio
Paparella, Gaetano
Van Caelenberg, Kristien
Chierchia, Gian Battista
Sarkozy, Andrea
Y Terradellas, Pedro Brugada
Zizi, Martin
Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title_full Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title_fullStr Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title_full_unstemmed Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title_short Leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ A systems biology approach to clinical categorization
title_sort leaving out control groups: an internal contrast analysis of gene expression profiles in atrial fibrillation patients ‐ a systems biology approach to clinical categorization
topic Prediction Model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649423/
https://www.ncbi.nlm.nih.gov/pubmed/19255648
work_keys_str_mv AT vanhouttekurt leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT deasmundiscarlo leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT francesconianna leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT figys1jurgen leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT steursgriet leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT boussytim leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT roosmarkus leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT muellerandreas leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT massimolucio leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT paparellagaetano leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT vancaelenbergkristien leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT chierchiagianbattista leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT sarkozyandrea leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT yterradellaspedrobrugada leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization
AT zizimartin leavingoutcontrolgroupsaninternalcontrastanalysisofgeneexpressionprofilesinatrialfibrillationpatientsasystemsbiologyapproachtoclinicalcategorization