Cargando…

GPR3 Receptor, a Novel Actor in the Emotional-Like Responses

GPR3 is an orphan G protein-coupled receptor endowed with constitutive Gs signaling activity, which is expressed broadly in the central nervous system, with maximal expression in the habenula. We investigated the consequences of its genetic deletion in several behavioral paradigms and on neurotransm...

Descripción completa

Detalles Bibliográficos
Autores principales: Valverde, Olga, Célérier, Evelyne, Baranyi, Mária, Vanderhaeghen, Pierre, Maldonado, Rafael, Sperlagh, Beata, Vassart, Gilbert, Ledent, Catherine
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649507/
https://www.ncbi.nlm.nih.gov/pubmed/19259266
http://dx.doi.org/10.1371/journal.pone.0004704
Descripción
Sumario:GPR3 is an orphan G protein-coupled receptor endowed with constitutive Gs signaling activity, which is expressed broadly in the central nervous system, with maximal expression in the habenula. We investigated the consequences of its genetic deletion in several behavioral paradigms and on neurotransmission. Compared to wild-type, hippocampal neurons from Gpr3(−/−) mice displayed lower basal intracellular cAMP levels, consistent with the strong constitutive activity of GPR3 in transiently transfected cells. Behavioral analyses revealed that Gpr3(−/−) mice exhibited a high level of avoidance of novel and unfamiliar environment, associated with increased stress reactivity in behavioral despair paradigms and aggressive behavior in the resident-intruder test. On the contrary, no deficit was found in the learning ability to avoid an aversive event in active avoidance task. The reduced ability of Gpr3 (−/−) mice to cope with stress was unrelated to dysfunction of the hypothalamic-pituitary-adrenal axis, with Gpr3(−/−) mice showing normal corticosterone production under basal or stressful conditions. In contrast, dramatic alterations of monoamine contents were found in hippocampus, hypothalamus and frontal cortex of Gpr3(−/−) mice. Our results establish a link between tonic stimulation of the cAMP signaling pathway by GPR3 and control of neurotransmission by monoamines throughout the forebrain. GPR3 qualifies as a new player in the modulation of behavioral responses to stress and constitutes a novel promising pharmacological target for treatment of emotional disorders.