Cargando…
MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue
MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649537/ https://www.ncbi.nlm.nih.gov/pubmed/19259271 http://dx.doi.org/10.1371/journal.pone.0004699 |
_version_ | 1782165056867270656 |
---|---|
author | Klöting, Nora Berthold, Susan Kovacs, Peter Schön, Michael R. Fasshauer, Mathias Ruschke, Karen Stumvoll, Michael Blüher, Matthias |
author_facet | Klöting, Nora Berthold, Susan Kovacs, Peter Schön, Michael R. Fasshauer, Mathias Ruschke, Karen Stumvoll, Michael Blüher, Matthias |
author_sort | Klöting, Nora |
collection | PubMed |
description | MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate whether miRNA expression in human adipose tissue is fat-depot specific and associated with parameters of obesity and glucose metabolism. Paired samples of abdominal subcutaneous (SC) and intraabdominal omental adipose tissue were obtained from fifteen individuals with either normal glucose tolerance (NGT, n = 9) or newly diagnosed type 2 diabetes (T2D, n = 6). Expression of 155 miRNAs was carried out using the TaqMan®MicroRNA Assays Human Panel Early Access Kit (Applied Biosystems, Darmstadt, Germany). We identified expression of 106 (68%) miRNAs in human omental and SC adipose tissue. There was no miRNA exclusively expressed in either fat depot, suggesting common developmental origin of both fat depots. Sixteen miRNAs (4 in NGT, 12 in T2D group) showed a significant fat depot specific expression pattern. We identified significant correlations between the expression of miRNA-17-5p, -132, -99a, -134, 181a, -145, -197 and both adipose tissue morphology and key metabolic parameters, including visceral fat area, HbA(1c), fasting plasma glucose, and circulating leptin, adiponectin, interleukin-6. In conclusion, microRNA expression differences may contribute to intrinsic differences between omental and subcutaneous adipose tissue. In addition, human adipose tissue miRNA expression correlates with adipocyte phenotype, parameters of obesity and glucose metabolism. |
format | Text |
id | pubmed-2649537 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-26495372009-03-04 MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue Klöting, Nora Berthold, Susan Kovacs, Peter Schön, Michael R. Fasshauer, Mathias Ruschke, Karen Stumvoll, Michael Blüher, Matthias PLoS One Research Article MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate whether miRNA expression in human adipose tissue is fat-depot specific and associated with parameters of obesity and glucose metabolism. Paired samples of abdominal subcutaneous (SC) and intraabdominal omental adipose tissue were obtained from fifteen individuals with either normal glucose tolerance (NGT, n = 9) or newly diagnosed type 2 diabetes (T2D, n = 6). Expression of 155 miRNAs was carried out using the TaqMan®MicroRNA Assays Human Panel Early Access Kit (Applied Biosystems, Darmstadt, Germany). We identified expression of 106 (68%) miRNAs in human omental and SC adipose tissue. There was no miRNA exclusively expressed in either fat depot, suggesting common developmental origin of both fat depots. Sixteen miRNAs (4 in NGT, 12 in T2D group) showed a significant fat depot specific expression pattern. We identified significant correlations between the expression of miRNA-17-5p, -132, -99a, -134, 181a, -145, -197 and both adipose tissue morphology and key metabolic parameters, including visceral fat area, HbA(1c), fasting plasma glucose, and circulating leptin, adiponectin, interleukin-6. In conclusion, microRNA expression differences may contribute to intrinsic differences between omental and subcutaneous adipose tissue. In addition, human adipose tissue miRNA expression correlates with adipocyte phenotype, parameters of obesity and glucose metabolism. Public Library of Science 2009-03-04 /pmc/articles/PMC2649537/ /pubmed/19259271 http://dx.doi.org/10.1371/journal.pone.0004699 Text en Klöting et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Klöting, Nora Berthold, Susan Kovacs, Peter Schön, Michael R. Fasshauer, Mathias Ruschke, Karen Stumvoll, Michael Blüher, Matthias MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title | MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title_full | MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title_fullStr | MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title_full_unstemmed | MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title_short | MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue |
title_sort | microrna expression in human omental and subcutaneous adipose tissue |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649537/ https://www.ncbi.nlm.nih.gov/pubmed/19259271 http://dx.doi.org/10.1371/journal.pone.0004699 |
work_keys_str_mv | AT klotingnora micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT bertholdsusan micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT kovacspeter micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT schonmichaelr micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT fasshauermathias micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT ruschkekaren micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT stumvollmichael micrornaexpressioninhumanomentalandsubcutaneousadiposetissue AT bluhermatthias micrornaexpressioninhumanomentalandsubcutaneousadiposetissue |