Cargando…
Dynamics of receptor and protein transducer homodimerisation
BACKGROUND: Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalli...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650691/ https://www.ncbi.nlm.nih.gov/pubmed/18976473 http://dx.doi.org/10.1186/1752-0509-2-92 |
_version_ | 1782165107846938624 |
---|---|
author | Vera, Julio Millat, Thomas Kolch, Walter Wolkenhauer, Olaf |
author_facet | Vera, Julio Millat, Thomas Kolch, Walter Wolkenhauer, Olaf |
author_sort | Vera, Julio |
collection | PubMed |
description | BACKGROUND: Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. RESULTS: In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. CONCLUSION: The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways. |
format | Text |
id | pubmed-2650691 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-26506912009-03-04 Dynamics of receptor and protein transducer homodimerisation Vera, Julio Millat, Thomas Kolch, Walter Wolkenhauer, Olaf BMC Syst Biol Research Article BACKGROUND: Signalling pathways are complex systems in which not only simple monomeric molecules interact, but also more complex structures that include constitutive or induced protein assemblies. In particular, the hetero-and homo-dimerisation of proteins is a commonly encountered motif in signalling pathways. Several authors have suggested in recent times that dimerisation relates to a series of physical and biological outcomes used by the cell in the regulation of signal transduction. RESULTS: In this paper we investigate the role of homodimerisation in receptor-protein transducer interactions. Towards this end, mathematical modelling is used to analyse the features of such kind of interactions and to predict the behaviour of the system under different experimental conditions. A kinetic model in which the interaction between homodimers provokes a dual mechanism of activation (single and double protein transducer activation at the same time) is proposed. In addition, we analyse under which conditions the use of a power-law representation for the system is useful. Furthermore, we investigate the dynamical consequences of this dual mechanism and compare the performance of the system in different simulated experimental conditions. CONCLUSION: The analysis of our mathematical model suggests that in receptor-protein interacting systems with dual mechanism there may be a shift between double and single activation in a way that intense double protein transducer activation could initiate and dominate the signal in the short term (getting a fast intense signal), while single protein activation could control the system in the medium and long term (when input signal is weaker and decreases slowly). Our investigation suggests that homodimerisation and oligomerisation are mechanisms used to enhance and regulate the dynamic properties of the initial steps in signalling pathways. BioMed Central 2008-10-31 /pmc/articles/PMC2650691/ /pubmed/18976473 http://dx.doi.org/10.1186/1752-0509-2-92 Text en Copyright © 2008 Vera et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Vera, Julio Millat, Thomas Kolch, Walter Wolkenhauer, Olaf Dynamics of receptor and protein transducer homodimerisation |
title | Dynamics of receptor and protein transducer homodimerisation |
title_full | Dynamics of receptor and protein transducer homodimerisation |
title_fullStr | Dynamics of receptor and protein transducer homodimerisation |
title_full_unstemmed | Dynamics of receptor and protein transducer homodimerisation |
title_short | Dynamics of receptor and protein transducer homodimerisation |
title_sort | dynamics of receptor and protein transducer homodimerisation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650691/ https://www.ncbi.nlm.nih.gov/pubmed/18976473 http://dx.doi.org/10.1186/1752-0509-2-92 |
work_keys_str_mv | AT verajulio dynamicsofreceptorandproteintransducerhomodimerisation AT millatthomas dynamicsofreceptorandproteintransducerhomodimerisation AT kolchwalter dynamicsofreceptorandproteintransducerhomodimerisation AT wolkenhauerolaf dynamicsofreceptorandproteintransducerhomodimerisation |