Cargando…

Regulation of Antiarrhythmic Drug Propafenone Effects on the C-type KV1.4 Potassium Channel by PH(o) and K(+)

The effects of the antiarrhythmic drug propafenone at c-type kv1.4 channels in Xenopus laevis oocytes were studied with the two-electrode voltage-clamp techinique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4ΔN channels. During recording, oocytes were cont...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhiquan, Wang, Shimin, Li, Jianjun, Jiang, Xuejun, Wang, Neng
Formato: Texto
Lenguaje:English
Publicado: The Korean Academy of Medical Sciences 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2650976/
https://www.ncbi.nlm.nih.gov/pubmed/19270818
http://dx.doi.org/10.3346/jkms.2009.24.1.84
Descripción
Sumario:The effects of the antiarrhythmic drug propafenone at c-type kv1.4 channels in Xenopus laevis oocytes were studied with the two-electrode voltage-clamp techinique. Defolliculated oocytes (stage V-VI) were injected with transcribed cRNAs of ferret Kv1.4ΔN channels. During recording, oocytes were continuously perfused with control solution or propafenone. Propafenone decreased the currents during voltage steps. The block was voltage-, use-, and concentration- dependent manners. The block was increased with positive going potentials. The voltage dependence of block could be fitted with the sum of monoexponential and a linear function. Propafenone accelerated the inactivate of current during the voltage step. The concentration of half-maximal block (IC(50)) was 121 µM/L. With high, normal, and low extracellular potassium concentrations, the changes of IC(50) value had no significant statistical differences. The block of propafenone was PH- dependent in high-, normal- and low- extracellular potassium concentrations. Acidification of the extracellular solution to PH 6.0 increased the IC(50) values to 463 µM/L, alkalization to PH 8.0 reduced it to 58 µM/L. The results suggest that propafenone blocks the Kv1.4ΔN channel in the open state and give some hints for an intracellular site of action.