Cargando…
Prediction of glycosylation sites using random forests
BACKGROUND: Post translational modifications (PTMs) occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transpo...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651179/ https://www.ncbi.nlm.nih.gov/pubmed/19038042 http://dx.doi.org/10.1186/1471-2105-9-500 |
Sumario: | BACKGROUND: Post translational modifications (PTMs) occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. RESULTS: We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program), predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. CONCLUSION: We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at . |
---|