Cargando…
Prediction of glycosylation sites using random forests
BACKGROUND: Post translational modifications (PTMs) occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transpo...
Autores principales: | Hamby, Stephen E, Hirst, Jonathan D |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651179/ https://www.ncbi.nlm.nih.gov/pubmed/19038042 http://dx.doi.org/10.1186/1471-2105-9-500 |
Ejemplares similares
-
Prediction of O-glycosylation Sites Using Random Forest and GA-Tuned PSO Technique
por: Hassan, Hebatallah, et al.
Publicado: (2015) -
Automatic structure classification of small proteins using random forest
por: Jain, Pooja, et al.
Publicado: (2010) -
Prediction of protein-mannose binding sites using random forest
por: Khare, Harshvardan, et al.
Publicado: (2012) -
Predicting sulfotyrosine sites using the random forest algorithm with significantly improved prediction accuracy
por: Yang, Zheng Rong
Publicado: (2009) -
Prediction of Protein Cleavage Site with Feature Selection by Random Forest
por: Li, Bi-Qing, et al.
Publicado: (2012)