Cargando…

Determination of X-ray flux using silicon pin diodes

Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here...

Descripción completa

Detalles Bibliográficos
Autores principales: Owen, Robin L., Holton, James M., Schulze-Briese, Clemens, Garman, Elspeth F.
Formato: Texto
Lenguaje:English
Publicado: International Union of Crystallography 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2651761/
https://www.ncbi.nlm.nih.gov/pubmed/19240326
http://dx.doi.org/10.1107/S0909049508040429
Descripción
Sumario:Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced.