Cargando…
Efflux Pump, the Masked Side of ß-Lactam Resistance in Klebsiella pneumoniae Clinical Isolates
BACKGROUND: β-lactamase production and porin decrease are the well-recognized mechanisms of acquired ß-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and succeptible to amoxicilli...
Autores principales: | , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652100/ https://www.ncbi.nlm.nih.gov/pubmed/19279676 http://dx.doi.org/10.1371/journal.pone.0004817 |
Sumario: | BACKGROUND: β-lactamase production and porin decrease are the well-recognized mechanisms of acquired ß-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and succeptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this β-lactam phenotype was the aim of this study. METHODOLOGY/FINDINGS: MICs of 9 β-lactams, including cloxacillin (CLX), and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI), then with both CLX (subinhibitory concentrations) and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other β-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other β-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of β-lactams. CONCLUSION: This is the first study demonstrating that efflux mechanism plays a key role in the β-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in ß-lactam resistance is specially underestimated in clinical isolates. |
---|