Cargando…

Auto-Ubiquitination-Induced Degradation of MALT1-API2 Prevents BCL10 Destabilization in t(11;18)(q21;q21)-Positive MALT Lymphoma

BACKGROUND: The translocation t(11;18)(q21;q21) is the most frequent chromosomal aberration associated with MALT lymphoma and results in constitutive NF-κB activity via the expression of an API2-MALT1 fusion protein. The properties of the reciprocal MALT1-API2 were never investigated as it was repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Noels, Heidi, Somers, Riet, Liu, Hongxiang, Ye, Hongtao, Du, Ming-Qing, De Wolf-Peeters, Christiane, Marynen, Peter, Baens, Mathijs
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2652110/
https://www.ncbi.nlm.nih.gov/pubmed/19279678
http://dx.doi.org/10.1371/journal.pone.0004822
Descripción
Sumario:BACKGROUND: The translocation t(11;18)(q21;q21) is the most frequent chromosomal aberration associated with MALT lymphoma and results in constitutive NF-κB activity via the expression of an API2-MALT1 fusion protein. The properties of the reciprocal MALT1-API2 were never investigated as it was reported to be rarely transcribed. PRINCIPAL FINDINGS: Our data indicate the presence of MALT1-API2 transcripts in the majority of t(11;18)(q21;q21)-positive MALT lymphomas. Based on the breakpoints in the MALT1 and API2 gene, the MALT1-API2 protein contains the death domain and one or both immunoglobulin-like domains of MALT1 (∼90% of cases) - mediating the possible interaction with BCL10 - fused to the RING domain of API2. Here we show that this RING domain enables MALT1-API2 to function as an E3 ubiquitin ligase for BCL10, inducing its ubiquitination and proteasomal degradation in vitro. Expression of MALT1-API2 transcripts in t(11;18)(q21;q21)-positive MALT lymphomas was however not associated with a reduction of BCL10 protein levels. CONCLUSION: As we observed MALT1-API2 to be an efficient target of its own E3 ubiquitin ligase activity, our data suggest that this inherent instability of MALT1-API2 prevents its accumulation and renders a potential effect on MALT lymphoma development via destabilization of BCL10 unlikely.