Cargando…

Mutagenesis identifies the critical amino acid residues of human endonuclease G involved in catalysis, magnesium coordination, and substrate specificity

BACKGROUND: Endonuclease G (EndoG), a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. METHODS: To identify the critic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Shih-Lu, Li, Chia-Cheng, Chen, Jaw-Chyun, Chen, Yi-Jin, Lin, Ching-Ting, Ho, Tin-Yun, Hsiang, Chien-Yun
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653514/
https://www.ncbi.nlm.nih.gov/pubmed/19272175
http://dx.doi.org/10.1186/1423-0127-16-6
Descripción
Sumario:BACKGROUND: Endonuclease G (EndoG), a member of DNA/RNA nonspecific ββα-Me-finger nucleases, is involved in apoptosis and normal cellular proliferation. In this study, we analyzed the critical amino acid residues of EndoG and proposed the catalytic mechanism of EndoG. METHODS: To identify the critical amino acid residues of human EndoG, we replaced the conserved histidine, asparagine, and arginine residues with alanine. The catalytic efficacies of Escherichia coli-expressed EndoG variants were further analyzed by kinetic studies. RESULTS: Diethyl pyrocarbonate modification assay revealed that histidine residues were involved in EndoG activity. His-141, Asn-163, and Asn-172 in the H-N-H motif of EndoG were critical for catalysis and substrate specificity. H141A mutant required a higher magnesium concentration to achieve its activity, suggesting the unique role of His-141 in both catalysis and magnesium coordination. Furthermore, an additional catalytic residue (Asn-251) and an additional metal ion binding site (Glu-271) of human EndoG were identified. CONCLUSION: Based on the mutational analysis and homology modeling, we proposed that human EndoG shared a similar catalytic mechanism with nuclease A from Anabaena.