Cargando…

Regulation of Tumor Progression by Extracellular Galectin-3

The relationship between a tumor cell and its microenvironment is bi-directional. The proteins expressed by the tumor cells alter the signatures on the seemingly normal stromal cells within the microenvironment, while the tumor cell signatures reflect the changes that occur as these cells interact w...

Descripción completa

Detalles Bibliográficos
Autores principales: Nangia-Makker, Pratima, Balan, Vitaly, Raz, Avraham
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654347/
https://www.ncbi.nlm.nih.gov/pubmed/19308684
http://dx.doi.org/10.1007/s12307-008-0003-6
Descripción
Sumario:The relationship between a tumor cell and its microenvironment is bi-directional. The proteins expressed by the tumor cells alter the signatures on the seemingly normal stromal cells within the microenvironment, while the tumor cell signatures reflect the changes that occur as these cells interact with the host microenvironment. Galectin-3 is a carbohydrate-binding protein that is over-expressed in a variety of tumors and immune cells in response to various stimuli. Ever since its discovery, it has been associated with cell and extracellular matrix interactions. However, in the last decade, an extensive accumulation of data has changed the perspective of this multifunctional protein. The unique structure of this protein, consisting of a carbohydrate-binding domain and a matrix metalloproteinase cleavable domain, enables it to interact with a plethora of ligands in a carbohydrate-dependent or independent manner. It is now becoming evident that galectin-3 is involved with a variety of extracellular functions like cell adhesion, migration, invasion, angiogenesis, immune functions, apoptosis and endocytosis. Galectin-3 is a substrate for matrix metalloproteinases and its cleavage plays an important role in tumor progression and can be used as a surrogate diagnostic marker for in vivo MMP activity.