Cargando…

Systems Biology: A Therapeutic Target for Tumor Therapy

Tumor-related activities that seem to be operationally induced by the division of function, such as inflammation, neoangiogenesis, Warburg effect, immune response, extracellular matrix remodeling, cell proliferation rate, apoptosis, coagulation effects, present itself from a systems perspective as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Reichle, Albrecht, Vogt, Thomas
Formato: Texto
Lenguaje:English
Publicado: Springer Netherlands 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654356/
https://www.ncbi.nlm.nih.gov/pubmed/19308694
http://dx.doi.org/10.1007/s12307-008-0012-5
_version_ 1782165354582114304
author Reichle, Albrecht
Vogt, Thomas
author_facet Reichle, Albrecht
Vogt, Thomas
author_sort Reichle, Albrecht
collection PubMed
description Tumor-related activities that seem to be operationally induced by the division of function, such as inflammation, neoangiogenesis, Warburg effect, immune response, extracellular matrix remodeling, cell proliferation rate, apoptosis, coagulation effects, present itself from a systems perspective as an enhancement of complexity. We hypothesized, that tumor systems-directed therapies might have the capability to use aggregated action effects, as adjustable sizes to therapeutically modulate the tumor systems’ stability, homeostasis, and robustness. We performed a retrospective analysis of recently published data on 224 patients with advanced and heavily pre-treated (10% to 63%) vascular sarcoma, melanoma, renal clear cell, cholangiocellular, carcinoma, hormone-refractory prostate cancer, and multivisceral Langerhans’ cell histiocytosis enrolled in nine multi-center phase II trials (11 centers). Each patient received a multi-targeted systems-directed therapy that consisted of metronomic low-dose chemotherapy, a COX-2 inhibitor, combined with one or two transcription modulators, pioglitazone +/− dexamethasone or IFN-alpha. These treatment schedules may attenuate the metastatic potential, tumor-associated inflammation, may exert site-specific activities, and induce long-term disease stabilization followed by prolonged objective response (3% to 48%) despite poor monoactivity of the respective drugs. Progression-free survival data are comparable with those of reductionist-designed standard first-line therapies. The differential response patterns indicate the therapies’ systems biological activity. Understanding systems biology as adjustable size may break through the barrier of complex tumor-stroma-interactions in a therapeutically relevant way: Comparatively high efficacy at moderate toxicity. Structured systems-directed therapies in metastatic cancer may get a source for detecting the topology of tumor-associated complex aggregated action effects as adjustable sizes available for targeted biomodulatory therapies.
format Text
id pubmed-2654356
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher Springer Netherlands
record_format MEDLINE/PubMed
spelling pubmed-26543562009-03-18 Systems Biology: A Therapeutic Target for Tumor Therapy Reichle, Albrecht Vogt, Thomas Cancer Microenviron Original Paper Tumor-related activities that seem to be operationally induced by the division of function, such as inflammation, neoangiogenesis, Warburg effect, immune response, extracellular matrix remodeling, cell proliferation rate, apoptosis, coagulation effects, present itself from a systems perspective as an enhancement of complexity. We hypothesized, that tumor systems-directed therapies might have the capability to use aggregated action effects, as adjustable sizes to therapeutically modulate the tumor systems’ stability, homeostasis, and robustness. We performed a retrospective analysis of recently published data on 224 patients with advanced and heavily pre-treated (10% to 63%) vascular sarcoma, melanoma, renal clear cell, cholangiocellular, carcinoma, hormone-refractory prostate cancer, and multivisceral Langerhans’ cell histiocytosis enrolled in nine multi-center phase II trials (11 centers). Each patient received a multi-targeted systems-directed therapy that consisted of metronomic low-dose chemotherapy, a COX-2 inhibitor, combined with one or two transcription modulators, pioglitazone +/− dexamethasone or IFN-alpha. These treatment schedules may attenuate the metastatic potential, tumor-associated inflammation, may exert site-specific activities, and induce long-term disease stabilization followed by prolonged objective response (3% to 48%) despite poor monoactivity of the respective drugs. Progression-free survival data are comparable with those of reductionist-designed standard first-line therapies. The differential response patterns indicate the therapies’ systems biological activity. Understanding systems biology as adjustable size may break through the barrier of complex tumor-stroma-interactions in a therapeutically relevant way: Comparatively high efficacy at moderate toxicity. Structured systems-directed therapies in metastatic cancer may get a source for detecting the topology of tumor-associated complex aggregated action effects as adjustable sizes available for targeted biomodulatory therapies. Springer Netherlands 2008-07-23 2008-12 /pmc/articles/PMC2654356/ /pubmed/19308694 http://dx.doi.org/10.1007/s12307-008-0012-5 Text en © The Author(s) 2008
spellingShingle Original Paper
Reichle, Albrecht
Vogt, Thomas
Systems Biology: A Therapeutic Target for Tumor Therapy
title Systems Biology: A Therapeutic Target for Tumor Therapy
title_full Systems Biology: A Therapeutic Target for Tumor Therapy
title_fullStr Systems Biology: A Therapeutic Target for Tumor Therapy
title_full_unstemmed Systems Biology: A Therapeutic Target for Tumor Therapy
title_short Systems Biology: A Therapeutic Target for Tumor Therapy
title_sort systems biology: a therapeutic target for tumor therapy
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654356/
https://www.ncbi.nlm.nih.gov/pubmed/19308694
http://dx.doi.org/10.1007/s12307-008-0012-5
work_keys_str_mv AT reichlealbrecht systemsbiologyatherapeutictargetfortumortherapy
AT vogtthomas systemsbiologyatherapeutictargetfortumortherapy