Cargando…
Robust simplifications of multiscale biochemical networks
BACKGROUND: Cellular processes such as metabolism, decision making in development and differentiation, signalling, etc., can be modeled as large networks of biochemical reactions. In order to understand the functioning of these systems, there is a strong need for general model reduction techniques a...
Autores principales: | Radulescu, Ovidiu, Gorban, Alexander N, Zinovyev, Andrei, Lilienbaum, Alain |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654786/ https://www.ncbi.nlm.nih.gov/pubmed/18854041 http://dx.doi.org/10.1186/1752-0509-2-86 |
Ejemplares similares
-
Hybrid stochastic simplifications for multiscale gene networks
por: Crudu, Alina, et al.
Publicado: (2009) -
Reduction of dynamical biochemical reactions networks in computational biology
por: Radulescu, O., et al.
Publicado: (2012) -
Robust flux balance analysis of multiscale biochemical reaction networks
por: Sun, Yuekai, et al.
Publicado: (2013) -
Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph
por: Albergante, Luca, et al.
Publicado: (2020) -
An in silico analysis of robust but fragile gene regulation links enhancer length to robustness
por: Barr, Kenneth, et al.
Publicado: (2019)