Cargando…

Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics

Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pha...

Descripción completa

Detalles Bibliográficos
Autor principal: Cacabelos, Ramón
Formato: Texto
Lenguaje:English
Publicado: Dove Medical Press 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654795/
https://www.ncbi.nlm.nih.gov/pubmed/19300564
_version_ 1782165404060221440
author Cacabelos, Ramón
author_facet Cacabelos, Ramón
author_sort Cacabelos, Ramón
collection PubMed
description Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive (EM)(*1/*1, *1/*10) (57.47%) and intermediate metabolizers (IM)(*1/*3, *1/*5, *1/*6, *7/*10) (25.29%), and the worst responders are the poor (PM) (*4/*4)(9.20%) and ultra-rapid metabolizers (UM) (*1×N/*1) (8.04%). Pharmacogenetic and pharmacogenomic factors may account for 75%–85% of the therapeutic response in AD patients treated with donepezil and other AChEIs metabolized via enzymes of the CYP family. The implementation of pharmacogenetic protocols can optimize AD therapeutics.
format Text
id pubmed-2654795
institution National Center for Biotechnology Information
language English
publishDate 2007
publisher Dove Medical Press
record_format MEDLINE/PubMed
spelling pubmed-26547952009-03-19 Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics Cacabelos, Ramón Neuropsychiatr Dis Treat Expert Opinion Donepezil is the leading compound for the treatment of Alzheimer’s disease (AD) in more than 50 countries. As compared with other conventional acetylcholinesterase inhibitors (AChEIs), donepezil is a highly selective and reversible piperidine derivative with AChEI activity that exhibits the best pharmacological profile in terms of cognitive improvement, responders rate (40%–58%), dropout cases (5%–13%), and side-effects (6%–13%) in AD. Although donepezil represents a non cost-effective treatment, most studies convey that this drug can provide a modest benefit on cognition, behavior, and activities of the daily living in both moderate and severe AD, contributing to slow down disease progression and, to a lesser exetnt, to delay institutionalization. Patients with vascular dementia might also benefit from donepezil in a similar fashion to AD patients. Some potential effects of donepezil on the AD brain, leading to reduced cortico-hippocampal atrophy, include the following: AChE inhibition, enhancement of cholinergic neurotransmission and putative modulation of other neurotransmitter systems, protection against glutamate-induced excitotoxicity, activation of neurotrophic mechanisms, promotion of non-amyloidodgenic pathways for APP processing, and indirect effects on cerebrovascular function improving brain perfusion. Recent studies demonstrate that the therapeutic response in AD is genotype-specific. Donepezil is metabolized via CYP-related enzymes, especially CYP2D6, CYP3A4, and CYP1A2. Approximately, 15%–20% of the AD population may exhibit an abnormal metabolism of AChEIs; about 50% of this population cluster would show an ultrarapid metabolism, requiring higher doses of AChEIs to reach a therapeutic threshold, whereas the other 50% of the cluster would exhibit a poor metabolism, displaying potential adverse events at low doses. In AD patients treated with a multifactorial therapy, including donepezil, the best responders are the CYP2D6-related extensive (EM)(*1/*1, *1/*10) (57.47%) and intermediate metabolizers (IM)(*1/*3, *1/*5, *1/*6, *7/*10) (25.29%), and the worst responders are the poor (PM) (*4/*4)(9.20%) and ultra-rapid metabolizers (UM) (*1×N/*1) (8.04%). Pharmacogenetic and pharmacogenomic factors may account for 75%–85% of the therapeutic response in AD patients treated with donepezil and other AChEIs metabolized via enzymes of the CYP family. The implementation of pharmacogenetic protocols can optimize AD therapeutics. Dove Medical Press 2007-06 /pmc/articles/PMC2654795/ /pubmed/19300564 Text en © 2007 Dove Medical Press Limited. All rights reserved
spellingShingle Expert Opinion
Cacabelos, Ramón
Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title_full Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title_fullStr Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title_full_unstemmed Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title_short Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics
title_sort donepezil in alzheimer’s disease: from conventional trials to pharmacogenetics
topic Expert Opinion
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654795/
https://www.ncbi.nlm.nih.gov/pubmed/19300564
work_keys_str_mv AT cacabelosramon donepezilinalzheimersdiseasefromconventionaltrialstopharmacogenetics