Cargando…

Gene-based bin analysis of genome-wide association studies

BACKGROUND: With the improvement of genotyping technologies and the exponentially growing number of available markers, case-control genome-wide association studies promise to be a key tool for investigation of complex diseases. However new analytical methods have to be developed to face the problems...

Descripción completa

Detalles Bibliográficos
Autores principales: Omont, Nicolas, Forner, Karl, Lamarine, Marc, Martin, Gwendal, Képès, François, Wojcik, Jérôme
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654974/
https://www.ncbi.nlm.nih.gov/pubmed/19091053
Descripción
Sumario:BACKGROUND: With the improvement of genotyping technologies and the exponentially growing number of available markers, case-control genome-wide association studies promise to be a key tool for investigation of complex diseases. However new analytical methods have to be developed to face the problems induced by this data scale-up, such as statistical multiple testing, data quality control and computational tractability. RESULTS: We present a novel method to analyze genome-wide association studies results. The algorithm is based on a Bayesian model that integrates genotyping errors and genomic structure dependencies. p-values are assigned to genomic regions termed bins, which are defined from a gene-biased partitioning of the genome, and the false-discovery rate is estimated. We have applied this algorithm to data coming from three genome-wide association studies of Multiple Sclerosis. CONCLUSION: The method practically overcomes the scale-up problems and permits to identify new putative regions statistically associated with the disease.