Cargando…

Evaluation of optimization techniques for variable selection in logistic regression applied to diagnosis of myocardial infarction

Logistic regression is often used to help make medical decisions with binary outcomes. Here we evaluate the use of several methods for selection of variables in logistic regression. We use a large dataset to predict the diagnosis of myocardial infarction in patients reporting to an emergency room wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiezun, Adam, Lee, I-Ting Angelina, Shomron, Noam
Formato: Texto
Lenguaje:English
Publicado: Biomedical Informatics Publishing Group 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655051/
https://www.ncbi.nlm.nih.gov/pubmed/19293999
Descripción
Sumario:Logistic regression is often used to help make medical decisions with binary outcomes. Here we evaluate the use of several methods for selection of variables in logistic regression. We use a large dataset to predict the diagnosis of myocardial infarction in patients reporting to an emergency room with chest pain. Our results indicate that some of the examined methods are well suited for variable selection in logistic regression and that our model, and our myocardial infarction risk calculator, can be an additional tool to aid physicians in myocardial infarction diagnosis.