Cargando…
Use of machine learning algorithms to classify binary protein sequences as highly-designable or poorly-designable
BACKGROUND: By using a standard Support Vector Machine (SVM) with a Sequential Minimal Optimization (SMO) method of training, Naïve Bayes and other machine learning algorithms we are able to distinguish between two classes of protein sequences: those folding to highly-designable conformations, or th...
Autores principales: | Peto, Myron, Kloczkowski, Andrzej, Honavar, Vasant, Jernigan, Robert L |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655094/ https://www.ncbi.nlm.nih.gov/pubmed/19014713 http://dx.doi.org/10.1186/1471-2105-9-487 |
Ejemplares similares
-
Computational Ways to Enhance Protein Inhibitor Design
por: Jernigan, Robert L., et al.
Publicado: (2021) -
Synthetic data for design and evaluation of binary classifiers in the context of Bayesian transfer learning
por: Maddouri, Omar, et al.
Publicado: (2022) -
Glycosylation site prediction using ensembles of Support Vector Machine classifiers
por: Caragea, Cornelia, et al.
Publicado: (2007) -
Fold-specific sequence scoring improves protein sequence matching
por: Leelananda, Sumudu P., et al.
Publicado: (2016) -
Machine learning in clinical care: Quo vadis?
por: Honavar, Vasant G
Publicado: (2019)