Cargando…
A comparison of four clustering methods for brain expression microarray data
BACKGROUND: DNA microarrays, which determine the expression levels of tens of thousands of genes from a sample, are an important research tool. However, the volume of data they produce can be an obstacle to interpretation of the results. Clustering the genes on the basis of similarity of their expre...
Autores principales: | Richards, Alexander L, Holmans, Peter, O'Donovan, Michael C, Owen, Michael J, Jones, Lesley |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655095/ https://www.ncbi.nlm.nih.gov/pubmed/19032745 http://dx.doi.org/10.1186/1471-2105-9-490 |
Ejemplares similares
-
Genome scans and microarrays: converging on genes for schizophrenia?
por: Williams, Nigel M, et al.
Publicado: (2002) -
A Comprehensive Comparison of Different Clustering Methods for Reliability Analysis of Microarray Data
por: Kafieh, Rahele, et al.
Publicado: (2013) -
Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach
por: Vivian‐Griffiths, Timothy, et al.
Publicado: (2018) -
A comparison of four methods for detecting weak genetic structure from marker data
por: Jones, Owen R, et al.
Publicado: (2012) -
A temporal precedence based clustering method for gene expression microarray data
por: Krishna, Ritesh, et al.
Publicado: (2010)