Cargando…
Sparse Representation for Classification of Tumors Using Gene Expression Data
Personalized drug design requires the classification of cancer patients as accurate as possible. With advances in genome sequencing and microarray technology, a large amount of gene expression data has been and will continuously be produced from various cancerous patients. Such cancer-alerted gene e...
Autores principales: | Hang, Xiyi, Wu, Fang-Xiang |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655631/ https://www.ncbi.nlm.nih.gov/pubmed/19300522 http://dx.doi.org/10.1155/2009/403689 |
Ejemplares similares
-
Maxdenominator Reweighted Sparse Representation for Tumor Classification
por: Li, Weibiao, et al.
Publicado: (2017) -
Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015) -
Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation
por: Gan, Bin, et al.
Publicado: (2014) -
Sparse representation approaches for the classification of high-dimensional biological data
por: Li, Yifeng, et al.
Publicado: (2013) -
Correction: Multiple Sparse Representations Classification
por: Plenge, Esben, et al.
Publicado: (2015)