Cargando…

Arthritogenic T cell epitope in glucose-6-phosphate isomerase-induced arthritis

INTRODUCTION: Arthritis induced by immunisation with glucose-6-phosphate isomerase (GPI) in DBA/1 mice was proven to be T helper (Th) 17 dependent. We undertook this study to identify GPI-specific T cell epitopes in DBA/1 mice (H-2q) and investigate the mechanisms of arthritis generation. METHODS: F...

Descripción completa

Detalles Bibliográficos
Autores principales: Iwanami, Keiichi, Matsumoto, Isao, Tanaka, Yoko, Inoue, Asuka, Goto, Daisuke, Ito, Satoshi, Tsutsumi, Akito, Sumida, Takayuki
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656230/
https://www.ncbi.nlm.nih.gov/pubmed/18992137
http://dx.doi.org/10.1186/ar2545
Descripción
Sumario:INTRODUCTION: Arthritis induced by immunisation with glucose-6-phosphate isomerase (GPI) in DBA/1 mice was proven to be T helper (Th) 17 dependent. We undertook this study to identify GPI-specific T cell epitopes in DBA/1 mice (H-2q) and investigate the mechanisms of arthritis generation. METHODS: For epitope mapping, the binding motif of the major histocompatibility complex (MHC) class II (I-Aq) from DBA/1 mice was identified from the amino acid sequence of T cell epitopes and candidate peptides of T cell epitopes in GPI-induced arthritis were synthesised. Human GPI-primed CD4+ T cells and antigen-presenting cells (APCs) were co-cultured with each synthetic peptide and the cytokine production was measured by ELISA to identify the major epitopes. Synthetic peptides were immunised in DBA/1 mice to investigate whether arthritis could be induced by peptides. After immunisation with the major epitope, anti-interleukin (IL) 17 monoclonal antibody (mAb) was injected to monitor arthritis score. To investigate the mechanisms of arthritis induced by a major epitope, cross-reactivity to mouse GPI peptide was analysed by flow cytometry and anti-GPI antibodies were measured by ELISA. Deposition of anti-GPI antibodies on the cartilage surface was detected by immunohistology. RESULTS: We selected 32 types of peptides as core sequences from the human GPI 558 amino acid sequence, which binds the binding motif, and synthesised 25 kinds of 20-mer peptides for screening, each containing the core sequence at its centre. By epitope mapping, human GPI325–339 was found to induce interferon (IFN) γ and IL-17 production most prominently. Immunisation with human GPI325–339 could induce polyarthritis similar to arthritis induced by human GPI protein, and administration of anti-IL-17 mAb significantly ameliorated arthritis (p < 0.01). Th17 cells primed with human GPI325–339 cross-reacted with mouse GPI325–339, and led B cells to produce anti-mouse GPI antibodies, which were deposited on cartilage surface. CONCLUSIONS: Human GPI325–339 was identified as a major epitope in GPI-induced arthritis, and proved to have the potential to induce polyarthritis. Understanding the pathological mechanism of arthritis induced by an immune reaction to a single short peptide could help elucidate the pathogenic mechanisms of autoimmune arthritis.