Cargando…
Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome
BACKGROUND: Chromosome 22q11 deletion syndrome (22q11DS) causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656481/ https://www.ncbi.nlm.nih.gov/pubmed/19243607 http://dx.doi.org/10.1186/1471-2350-10-16 |
Sumario: | BACKGROUND: Chromosome 22q11 deletion syndrome (22q11DS) causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. METHODS: We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH), quantitative real-time polymerase chain reaction (qPCR) and multiplex ligation-dependent probe amplification (MLPA). RESULTS: Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p < 0.01). An identical deletion was shown in three affected infants by MLPA. These reduced DNA dosages were also obtained partially using array-CGH and confirmed by qPCR but with some differences in deletion size. CONCLUSION: Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes. |
---|