Cargando…
A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the Proliferation, Immune response and RNA splicing modules in breast cancer
INTRODUCTION: Several gene expression signatures have been proposed and demonstrated to be predictive of outcome in breast cancer. In the present article we address the following issues: Do these signatures perform similarly? Are there (common) molecular processes reported by these signatures? Can b...
Autores principales: | Reyal, Fabien, van Vliet, Martin H, Armstrong, Nicola J, Horlings, Hugo M, de Visser, Karin E, Kok, Marlen, Teschendorff, Andrew E, Mook, Stella, van 't Veer, Laura, Caldas, Carlos, Salmon, Remy J, Vijver, Marc J van de, Wessels, Lodewyk FA |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2656909/ https://www.ncbi.nlm.nih.gov/pubmed/19014521 http://dx.doi.org/10.1186/bcr2192 |
Ejemplares similares
-
Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability
por: van Vliet, Martin H, et al.
Publicado: (2008) -
Integration of Clinical and Gene Expression Data Has a Synergetic Effect on Predicting Breast Cancer Outcome
por: van Vliet, Martin H., et al.
Publicado: (2012) -
SIRAC: Supervised Identification of Regions of Aberration in aCGH datasets
por: Lai, Carmen, et al.
Publicado: (2007) -
Identification of distinct miRNA target regulation between breast cancer molecular subtypes using AGO2-PAR-CLIP and patient datasets
por: Farazi, Thalia A, et al.
Publicado: (2014) -
A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets
por: Lai, Carmen, et al.
Publicado: (2006)